
The new string unicode type

Marco van de Voort

December 3, 2010

Version: 0.06

1

Contents

0.1 Introduction . 3

0.1.1 Tiburón . 3

0.1.2 The encodings . 5

0.1.3 Economics of the encodings 5

0.1.4 Granularity of [] . 6

0.1.4.1 Meaning 1: index means codepoints 6

0.1.4.2 Meaning II: index means granularity of the en-
coding . 6

0.1.4.3 Meaning III: index means character 6

0.1.4.4 Granularity conclusion 6

0.2 Requirements . 7

0.2.1 Required �new� functions. 8

0.2.2 The Windows �W� problem 8

0.3 The proposals . 9

0.3.1 Felipe's proposal. 9

0.3.2 Marco's proposal . 10

0.3.2.1 Aliases . 10

0.3.3 Florian's proposal. 11

0.3.3.1 The biggest problem: can't declare what type to
expect. 12

0.3.3.2 Existing code . 12

0.3.3.3 The granularity 12

0.3.3.4 Performance . 13

0.3.3.5 Alternate encodings. 14

0.3.3.6 Florian's response 14

0.3.3.7 The good points 15

0.3.4 Yury's proposal . 15

0.3.5 The hybrid model . 15

0.3.5.1 Problems of hybrid: var 17

2

0.1 Introduction

Lately there has been some discussion about a new unicode type, mostly due
to a request from the Lazarus team to support unicode in �le operations (for
�lenames, not handling of unicode �les). A few proposals were made on the
fpc-pascal maillist, abd some discussion followed, but it died out, and there a
lot of details of the proposals were only discussed on subthreads.

I decided to try to summarize all positions and requirements, at least as I saw
them as a kind of a discussion document. During the discussions I also detailed
the requirements I had in mind a bit more, so I decided to write them down
too.

Versioning:

• First version mostly my own writeup. Was originally meant to highlight
the �aws that I saw in Florian's original proposal. There might still be
some of the negative sentiment left, please skip it.

• Second version mostly Florian's feedback which I commented on

• Third version vastly expanded the Tiburón paragraph when CG lifted the
veil a bit late July/early August, and the hybrid model.

• Fourth version added the �economics� paragraph, expanded the hybrid
model and mentions Yury's proposal and wiki page.

• Fifth version(sept 2010) is mostly due to the new requirements now that
FPC support compatible to Delphi/Unicode is becoming a possibility (cp-
newstr). Some other details (OEMSTRING) were also added.

• Sixth (0.6) (dec 2010) version adds some minor completion of un�nished
sentences and other minor clari�cations

0.1.1 Tiburón

Tiburón is the codename for what is supposed to be the next version of Delphi
(version 2008?), and is supposed to have unicode. While we currently do not
follow Delphi compatability slavishly, it should only be broken if there are good
reasons. A main reason for this is to not make life too hard on Delphi open
source projects that also want to support FPC/Lazarus. Slowly details about
Tiburón are starting to appear in CG oriented blogs. (e.g. Andreas Bauer's)

• A new utf-16 ref counted unicode stringtype is added.

� s[x] doesn't take care of surrogates.

� It is not yet clear if and how it supports endianness.

• Ansistring becomes a basetype for all 1 byte based encodings (ansi, codepages,UTF-
8), based on the fact that for internal windows functions, UTF-8 is treated
as a codepage.

3

� To de�ne a stringtype for a certain (Windows) codepage enumeration
value, type mycodepagestring = type ansistring (1251);

� Conversions that write a non UTF-8 codepage can be lossy.

� UTF-8 is codepage 65001 (ident CP_UTF8)

� codepage $FFFF is used for an �Rawbyte� ansistring that is never
converted, it's binary copied into the target.

� probably value codepage $0 is used for the old ansistring. The con-
versions to and from this type (which codepage?) are not clear.

� It seems that the typing of ansistring has become stronger, and honor
TYPE (as in something = TYPE ansistring) is now really an incom-
patible type.

� Conversions are done over UTF-16, but this might be a Windows
implementation detail. (IOW on Unix use UTF-8)

� Windows has a separate codepage (OEM) for console. So in fact there
are three encodings (OEM, Ansi and UTF16) in a Windows enviro-
ment. There is a separate tag (CP_OEMCP) for the default OEM
page. I suggest we prede�ne OEMSTRING= ansistring(CP_OEMCP);

This quick summary has four aspects I don't like for porting to FPC:

1. The use of windows speci�c codepage enumeration values in language syn-
tax. However maybe they are really serious about the constants use, and
this is livable. In my opinion it is the VCLs job to encapsulate the winapi
gore, and if it can't be avoided, at least encourage a clean use. Daniel notes
that there are not much platform independant choices to begin with.

2. The fact that conversions between codepages are automated and can fail.
(see also the discussion about codepages in the critique of Florian's pro-
posal) This means that if you use codepage strings, you must be very
careful with your codepaths, so that you can be pretty sure that there
aren't alternate paths that mutilate data.

3. UTF-8 and UTF-16 are scattered over two di�erent types. This solution
is non-orthogonal.

4. The big one, the compatibility break between Delphi2007- and 2009+.
FPC can avoid this on a compiler level the same way they �xed the
string=shortstring to string=ansistring move, but the library level is more
di�cult. D2007- expects e.g. Windows API functions to call the -A ver-
sions, while 2009+ calls the -W versions

They probably had the same as we problem for multiple-encodings types (see
�Granularity of []�) , but chose to keep this compiletime by dividing the types
according to 1 or 2 byte granularity. Maybe this also has some advantages in the
compiler (being able to treat tunicodestring and twidestring the same here and
there). And they don't support UTF-32, probably because windows doesn't (or
it isn't used)

Another question mark is the fact that a lot of new ansistring variants are
introduced that are apparantly type safe. The question begs what stringtype
is in e.g. variant (my guess: all non ansi ansistrings are converted to either
widestring or a new tunicodestring �eld)

4

0.1.2 The encodings

The three main encodings are UTF-8, UTF-16 and UTF-32. An important
property of these is that they are basically di�erent ways to describe the same,
so they can be convererted to eachother pretty easily and safely. Note that the
multi byte encodings (16 and 32 (?)) also have big endian and little endian
variants.

However for now I'm going to forget the big endian and little endianess.
This kind of cross-platform compability is fairly rarely a problem. Only �les
that share that between di�erent architectures need to insert conversions, and
this can be better done manually. The same goes for arbitrary other sources
that might have a di�erent encoding. The di�erence is also only important on
the perimeter of the system (when you load external data), since the system
will mostly be in the same endianess

Besides these three main encodings, conversions of the string type to and from
the older codepages could be useful too, because the world won't become unicode
instantly, and ansistrings are here to stay for a while. Most notably Florian's
proposal has some (potential) support for other codepages too, though not many
details.

0.1.3 Economics of the encodings

In one of the unicode discussions Daniel posted this link: http://unicode.org/notes/tn12/
http://unicode.org/notes/tn12/. I just had some discussion about this in a
di�erent maillist on the subject of which is the ideal encoding, and here is my
opinion some comments about encoding enconomics. Note that not all points
are meant as arguments in favour of UTF-8 per se, just observations.

• First and for all, the question is mostly irrelevant since the choice of pri-
mary encoding (and endianness if>8) for a platform/target has been made
already by the OS and the general ABI. Deviating from this to simply pos-
sible multiplatform programmers at the expensive of people programming
for the platform natively is IMHO not an option.

• An often misinformed statement is that everything but ansi is worse in
utf-8. This is not true, everything up from ascii to codepoint $0800 is
equal in size between UTF-8 and UTF-16. This plane contains Cyrillic as
well as several popular languages from the Semetic group like Hebrew and
Arabic.

• The simplicity of UTF-16 is quoted in a lot of place, the above link inclu-
sive. While some may see it acceptable to cut corners in applications, it is
IMHO not acceptable to break full unicode compliance in a serious library,
and most of all, a RTL. This means that most speeddependant routines in
an app must be able to handle UTF-16 surrogates and maybe also endi-
anness. I personally think that serious applications shouldn't cut corners
either. Note though that surrogates don't hinder all string routines.

• Routines that don't need to process UTF-8 surrogates and encounter
mostly Latin scripts are faster in UTF-8. (less bytes to move)

5

 http://unicode.org/notes/tn12/

Btw I use http://www.unicode.org/roadmaps/bmp/ http://www.unicode.org/
roadmaps/bmp/ to quickly see what language groups are where in the BMP.

0.1.4 Granularity of []

One of the bene�ts of the discussion was that it called some attention to the s[]
operator. First because it was a possible weakness of Florian's proposal (that
got remedied later), but the more important one from a design perspective is
what c:=s[5]; is supposed to mean with (s in [UTF8,UTF16,UTF32]).

Let's take utf16 for a moment, and assume we have 10 codepoints, and every
second is a surrogate. Then there are three possible meanings:

0.1.4.1 Meaning 1: index means codepoints

In this meaning, a string is (a view on) an array of codepoints. So

c:=s[5]; means the 5th codepoint. A codepoint can be >2 bytes, so type of �c�
must be able to contain a 32-bit value. The �rst 5 codepoints have two with
surrogates so the address of the �rst char is @s[1]+5*2 + 2*2=@s[1]+14 (all in
bytes)

Writing a character (s[5]:=c) is an even worse problem, since a codepoint written
might not have the same size as the codepoint current;y at the at s[5], needing
costly (O(n)) insertion routines.

0.1.4.2 Meaning II: index means granularity of the encoding

In this meaning the string is (a view on) an array with the ganularity of the
encoding. So 1 in the case of UTF-8, 2 in the case of UTF-16 etc.

c:=s[5]; in UTF-16 means s[1]+5*2 =@s[1]+10 (all in bytes)

Writing a character (s[5]:=c) pretty much remains the same everything has the
granularity of the encoding.

0.1.4.3 Meaning III: index means character

This is nasty, even UTF32 has the granularity of a codepoint. However printable
characters may be composed out of multiple codepoints. This basically means
the end of �char� as a separate type. Everything is a variable length string, and
basic string operations have to be code on a lower level.

0.1.4.4 Granularity conclusion

(Note that the same problem also goes for Length(s). codepoints or elements in
the granularity of the encoding?)

The problem with the array of codepoints is that typical code like

6

http://www.unicode.org/roadmaps/bmp/
http://www.unicode.org/roadmaps/bmp/

for i:=1 to length(s) do

s[i]:=' ';

is very expensive since

• the address of s[x] depends on all codepoints before codepoints x. This
can make the above loop quadratic in the number of codepoints jumps (
on average (n^2)/2). Most platforms also use a procedure to iterate over
codepoints.

• each codepoint assignment can possibly be an insertion or deletion of
bytes, since the assigned codepoint can be smaller or larger than the code-
point already in place.

IMHO this opens a can of worms where we don't want to go1. However it might
be an argument to (also) support UTF-32, since that does allow fairly easy char
manipulation, with minimal limitations: If it is a routine that is not really much
used, the simplest way to convert would be to do something like

procedure dosomething (var s:utf16string);

var internals: utf32string;

begin

internals:=s; // force conversion to utf32.

<�<insert old ansistring code here, but only update �char� to a 32-bits type>�>

s:=internals; // convert back.

end;

Of course this is not perfect (e.g. charsets won't work because even a charset
for the de�ned codepoints would be in the magnitude of 125k), but it is easy,
and avoids messing too much with working code.

To state the obvious: to go there, we would have to forgo using the basic
string types in standard routines, and code every reusable string routine on an
assembler or pointer level.

0.2 Requirements

The requirements are a bit of a problem because there are several factors that
are not compatible to each other (e.g. speed and ease of use), and tradeo�s
vary. Anyway the main requirements in a very broad de�nition are:

• Ease of use

• Reasonable to good performance

• Compatible with normal ansistring handling as much as reasonably pos-
sible.

1Since we don't have any optimizations that optimize loops in an advance way, I don't

think it is acceptable to waive this point in the hope that future optimizations will solve this.

7

• Compatible with Tiburón

• Multi platform aspects.

• Respect certain FPC traditions, most notably

� the need to combine code from di�erent origins/styles into one pro-
gram. (e.g shortstring TP and ansistring Delphi code) code are cur-
rently combinable in one program, and a single directive controls the
meaning of the �string� type to make it compatible on a per unit
basis with both)

� the fact that the entire RTL is mostly implemented in (FPC's) Pascal.

� FPC being portable means nativeness on every platform. Not carry-
ing conventions from other operating systems to operating systems
where they are alien (e.g. POSIX on Windows)

Note: Most of the unices, but not all, use UTF-8, Windows use UTF-16.

0.2.1 Required �new� functions.

1. Regardless which choice is made for the default (see ?? on page ??),
Length(s) should be available in both meanings: length in codepoints
and in granularity length.

2. charat(n) - returns codepoint [n]... assuming we chose the encoding gran-
ularity.

3. charnext (strnext out of delphi compat?)

How much of these will/should be (partially) inlinable? Is it worth it? It seems
that most libc's use functions, not macro's, which might be an indicator that
procedural overhead is less than the actual operation.

0.2.2 The Windows �W� problem

Sideways related is the windows problem that on NT special functions must
be called for unicode strings, all these functions end on -W instead of -A. Also
all these symbols (and their record de�nitions) are typically organized in the
windows header source as

{$ifdef unicode}

procedure xxx; (arguments);stdcall; external 'kernel32.dll' name 'xxxW';

{$else}

procedure xxx; (arguments);stdcall; external 'kernel32.dll' name 'xxxA';

{$endif}

The actual problem is that these calls don't exist (or work) on windows 9x.
There are several solutions for this problem:

8

1. A combination of runtime OS detection and loading. Problem is that the
windows header sets are huge, and there is a great potential for error.

2. Splitting the win32 target over unicode support.. So the current imple-
mentation is parameterized and move to a shared dir, and win9x target
sets some types and de�nes, and imports these include�les, as well as the
NT-unicode target that de�nes UNICODE.

Personally I like the splitting. Note that the �win9x� target will still work on
win NT/2k/XP, and is in fact a �real� win32. Note that the target names were
picked in a hurry, maybe �win32� and �winnt� are better target names.

NOTE: I haven't seen any clear evidence yet to which set of API functions
UTF_8 needs to be pasted (NT Only). If any.

0.3 The proposals

In the maillist discussion there were 3 proposals that I'll summarize shortly
below.

0.3.1 Felipe's proposal.

Felipe's proposal was the �rst, and was mostly still oriented towards the direct
File I/O problem. He proposed to use UTF-16 exclusively. Period.

Advantages

1. Simplicity

2. Carries Delphi compatibility to the extreme, introducing Delphi/Unicode
UTF16 assumption on all platforms. Even if UTF16 is not the native
unicode encoding.

Disadvantages

1. No way to support UTF-8, this means that all dealing with UTF-8 (the
main encoding on Unix) must be manual on p(ansi)char level or through
careful use of ansistring workarounds, or face heavy repeated conversion
penalties. This also means code must be written to pass a readonly unicode
string to a library on unix, instead of simply passing pwidechar(s). It is a
windows centric proposition

2. No utf-32, so also no simple way

Keep in mind that this also means some complications for e.g. standard �le
I/O, that must change from UTF-8 to UTF-16.

9

0.3.2 Marco's proposal

This proposal was more in line with earlier discussions on core, simply have three
separate types for the three encodings, that autoconvert reasonably, and the
implementation is nearly the same. To keep RTL size down, most system calls
would only accept strings in the system encoding, except for VAR parameters
that need to be wrapped or double implemented.

So for clarity: an utf8string, utf16string and a utf32string type.

Advantages

1. The string types that a routine use signal the encodings it accepts/returns.

2. Maximum speed for code that uses only one encoding, no conversion, no
runtime behaviour.

3. The fact that the types have exactly the same content in a di�erent repre-
sentation (4 types, together with UTF-32 and the COM widestring) made
me hope that the implementation would not be that much more compli-
cated than one + a bunch of special options and directives.

4. Interfacing with systems with a di�erent encoding is simple. Convert to
correct type if not already, and then typecast.

5. Tiburón code could simply use UTF16 string everywhere (a simple {$H
like directive), and be very to totally compatible, and yet mixable.

Disadvantage

1. Most new types, thus also the most conversions.

2. Separate types, so one can't pass UTF-8 string to a procedure with a var
or out parameter of UTF-16 type.

3. Only overloading and conversion as instrument for routines that must
accept multiple encodings. Not unlike ansistring and shortstring IOW
with the same problems.

4. More types also means a lot more vt<x> constants in tvarrecs, variants
etc.

5. Pre�x records of types can't be Tiburón compatible

0.3.2.1 Aliases

To make this work properly, there will be some additional aliases:

• An alias to a type that always is the same as the system encoding. If you
use this you are always safe performance wise.

• An alias to utf16string of whatever identi�er Tiburón uses for

This also means that encoding agnostic code should use the system encoding,
since the average string will be probably in the system encoding

10

0.3.3 Florian's proposal.

Florian proposed to have a single unicode type that can represent the three
encodings (UTF-x), and maybe others too (the old ascii codepages as well as
LE vs BE). The principle is the same as ansistring, additional needed info is
pre�xed at addresses before s[1]. Currently it is only the encoding type, but it
could be expanded.

There are a lot more implementation details to be resolved in this proposal.

Florian says the following about the granularity of the type.

to overcome the indexing problem e�ciently when using an encoding
�eld (this is not about surrogates), we could do the following: intro-
duce a compiler switch {$unicodestringindex default,byte,word,dword}.
In default mode the compiler gets a shifting value from the encoding
�eld (this is 4 bytes anyways and could be split into 1 byte shifting,
2 bytes encoding, 1 bytes reserved). In the other modes the compiler
uses the given size when indexing. For example, a Tiberion (or how
is it called?) switch could set this to word.

Later however he says (in response to the below granularity challenge)

I described this already in detail in my �rst mail: just in one of the
four bytes available for storing the encoding.

Now I'm confused :)

Anyway about the performance he says:

The approach has the big advantage, that you really need all pro-
cedures only once if desired. For example e.g. linux would get only
utf-8 routines by default, utf-16 is converted to utf-8 at the entry
of the helper procedures if needed. Usually, no conversion would be
necessary because you see seldomly utf-16 in linux applications so
only the check if the input strings are really utf-8 is necessary, this
is very cheap because the data is anyways already in a cache line.

He also says

Keep in mind in your response, that we want also handle other
formats than utf-8 or utf-16 if needed :)

Michael says:

For the LCL/fpGUI/MSEGui programmers, nothing changes, > you
can even throw away your own conversion routines. > You need only
a single call just prior to passing a string > to the OS/GUI system:
ForceEncoding(). No ifdefs needed, > all is transparant.

The type is a bit too complex to have a series of simple advantages and disadvan-
tages, so I just going to describe some of the problems, and ask for clari�cation.

11

0.3.3.1 The biggest problem: can't declare what type to expect.

My initial reaction was �oh my, a runtime type in Pascal, what about perfor-
mance? It will be pretty much likes variants, and they are known to be slow.
We will become Perl/Python�

However while I still have serious doubts about performance, that's not the
bigger problem. Since with pretty much any solution you can always isolate the
speed dependant part, force the encoding to be constant (preferably the system
encoding), and be done with it. Moreover, there is much to say for having only
one string type, even if it is polymorphic internally.

The bigger problem however is that you don't declare the type of the encoding
anymore in parameters, local variables and return type. This means manual
insertion of Michael's Enforceencoding calls everywhere, also in existing Tiburón
code. It invalidates my own (but agreed: not Florian's requirements) that
existing code remains running with only some global mode settings. (assuming
Tiburón is �existing code�). Or, generalized: if you synthesize an application
using code from various sources you'll need

I can illustrate that with two examples or thought experiments:

0.3.3.2 Existing code

Assume I have a unit with UTF-16 Tiburón code. And and some unit with UTF-
8 code of Lazarus descent where I globally replaced �ansistring� by unicodestring
(or whatever identi�er for the native type) to upgrade it to �native� unicode on
an Unix target.

Now we want these to work call eachother, and neither of these is prepared
for the polymorphic type to contain the wrong encoding. Worse, literals in
the Tiburón code will probably be created in the native (UTF-8) encoding. In
turn, the UTF-8 routines might receive occasionally a string that has passed
the Tiburón code and contains code that assumes UTF-16 encoding. The only
solution is to audit the _entire_ source code for all these points, and insert
ForceEncodings() statements for all parameters and after assignment of a literal.
Here another potential problem surfaces, an empty string might not be forcable.

This is an extremely hard sell to Delphi users, and IMHO not necessary anyway.
Something will have to be done about this. A solution would be the hybrid pro-
posal, see the separate paragraph further down. It is more or less the declarative
behaviour of my proposal combined with the implementation of Florian's.

0.3.3.3 The granularity

The problem with the granularity lies a bit in the same region as the last: if
you have a procedure you must be prepared to handle all types. Now assume I
honour that, and I am trying to make a procedure that understands both en-
codings, e.g. a dual encoding version of the �granularity� problem above. Then
according to Florian's �rst quote above I only have one compiletime granularity

while the type of my unicodestring is de�ned runtime !

12

{$unicodestringindex <what to put here?>}

procedure myuniversalstringroutine(s:tunicodestring);

begin

if encodingof(s)=utf_8 Then

begin

for i:=1 to length(s) do // s in single bytes

s[i]:='a'; // s[i] in single byte values. type of literal?

end

else

begin // utf 16

for i:=1 to length(s) do // length(s) in 2 byte values

s[i]:='a'; // s[i] in two byte values. type of literal?

end

end;

begin

myunversialstringroutine(getutf16stringroutine);

myunversialstringroutine(getutf8stringroutine);

end;

The conclusion of this is IMHO that shift size should be part of the runtime
string too, iow a value of 1,2,4 somewhere at negative o�set of the pointer. This
is a performance penalty, since s[4] is then a more runtime construct.

0.3.3.4 Performance

A runtime solution is always slower as a compiletime one. While performance
isn't my biggest gripe, the problem is that I only see a small advantage in return:
working VAR parameters and a lower need for overloading. For that we see a
lot more checks done (because the encoding check must be after the nil check
which will complicate codegeneration).

Florian claims to partially earn this back with less conversions in all, but I
don't buy that, except maybe in cases like (mostly GUI) apps with QT on *nix
(where widgetset (UTF16) and system encoding (UTF8) are di�erent). Simply
having an type-alias for whatever encoding is the system encoding will achieve
the same. Moreover, the decision which type to convert lies with the compiler
which has generally more information at its disposal than the runtime library.
Take for instance the following example:

var s1: utf8string; // utf-8 is the system encoding, we're on unix

s2: utf16string;

s1:=someinit8();

s2:=someinit16();

s1:=s2+s1;

utf8routine(s1);

(note that for Florian's example, all string types are the same, in his case, read
the declarations of s1 and s2 as �strings initialised �lled with a utf-8/16 value)

13

Now the runtime libs can probably not exploit the fact that the system encoding
is more useful, and s1:=s2+s1; might end up converting the utf-8 type to utf-16,
and storing the utf-16 result in s1. And then the check in utf8routine() will have
to change the encoding again.

Also the �leaf out routines� argument is IMHO bogus, since if the types of my
proposal autoconvert (not unlike uniquestring()), the more complex routines like
the bulky �oating point and datetimeformatters could also be available only in
the system encoding (which is most likely to happen), give or take a few small
wrappers to work around VAR parameter problems.

0.3.3.5 Alternate encodings.

(this paragraph is academic since we need to support other encodings because
of Delphi, it was written before this was known though)

Florian also mentioned an interest in supporting the old codepages as part of
the requirements. I don't know if that was only a teaser because his proposal
had more leeway for that or because he really saw a case and a need for that.

However while I entertained the idea as interesting for a while, I'm not so
convinced this is doable for two main reasons,

• the UTF-x to UTF-y conversions are guaranteed to work if not corrupt,
and if there are corner cases, they are far and few. But the codepages only
accept a real small set of the possible codepoint set of the UTF-encodings
and also eachother. The errorhandling is IMHO a problem.

• Because the type of the polymorphic doesn't change unless forced, these
strange encodings could penetrate everwhere in your codebase when sim-
ply strings are passed on unmodi�ed. The amount of exceptions of unex-
pected encodings, and conversion failures all over your (till now working)
code is confusing, unless you want to manually try except all string code
in case some conversion goes wrong.

0.3.3.6 Florian's response

The discussion about this article doesn't seem to have changed much about each
parties viewpoint. Except maybe the �existing code� problem,2

(quote Florian)

Indeed, it requires some work but there are several possibilities:

1. add a switch for runtime checks about string encoding

2. add a switch to enforce encoding at procedure entries and for function
results

2Note that existing code is not only code that is �old� or �Tiburón� but in general all code

that can only accept one encoding.

14

The code needs to be reworked anyways.

(...end quote..)

I think this is butt ugly, and overly complicated, but at least it �xes my most
major problem. Maybe if we can predeclare a lot of these as types, we can
actually con�ne the clutter.

note: see also the 0.3.5.1 on page 17 paragraph, and the hybrid paragraph in
general. There are complications.

0.3.3.7 The good points

In some ways this proposal was better than the Windows centric Tiburon im-
plementation, in the sense that it uni�es UTF8 and UTf16 in one stringtype.
Apparantly Codegear even put more stress on cheapness of [] than I did. In
theory a stringtype with a granularity �eld (in the TAnsiRec), could host both
UTF8 and UTF16. This might cause Codegear pain when going multiplatform.
If they persist in UTF16. Of course we'll never know for sure if this was a
lost chance or not. This is likely, since for them multiplatform is mostly only a
�feature� in addition to the core win32/64 product.

0.3.4 Yury's proposal

Yury wrote something up independantly at FPC wiki about FPC Unicode sup-
port http://wiki.freepascal.org/FPC_Unicode_support. It is the same ba-
sic idea as Florian's: encodingtype and granularity-of-encoding in the pre�x of
the string. He goes a step further and also seems to hint on reimplementing
existing types on this scheme. (which is not realistic for shortstring, and maybe
widestring).

What I like in Yury's proposal is that he combines the implementation from
Florian with the declaration that shows real types that I favour, in short, es-
sentially it is the hybrid detail of the next paragraph in the rough. The hybrid
model does divide some of the types over two types, the new unicodestring and
ansistring (the codepage stu�, if we do that, there is no need to be Tiburón
incompatible)

0.3.5 The hybrid model

This is just a short thought experiment, this part hasn't been discussed with
Florian and Michael much yet (though Yuri seems to come up with it indepen-
dantly). The main reason is that the typing is my main grudge against Florian's
proposal, and the performance less. It builds a bit on Florian's willingness to
tackle some of those with directives. If that gives enough leeway to de�ne types,
Florian's proposal morphs into this hybrid model.

So assume we combine Florian's and some of the requirements (but not imple-
mentation) that are the basis for Marco's example. This means one base unicode

15

http://wiki.freepascal.org/FPC_Unicode_support

type that can be parameterized to four types for declaration purposes (a sin-
gle implementation of generic runtime dependant unicodestring as per Florian's
proposal, but separate (sub)types per encoding (TUtf8string,TUtfstring16 and
TUtfstring32)). These latter might be not real (compiler) types, but de�ned
like below.

Type

tutf8string = type tunicodestring(Mandatory_UTF8); // or however we style the modifier.

alternate syntax (?), more in Florian's style with directives

type

{$unicodetype mandatory_utf8}

tutf8string = tunicodestring;

{$unicodetype general}

However because these forced types are 100% compatible with the full type,
there is less of a multitude of overloads for VAR or overloading of helpers (for
e.g. variant which only contains the general type).

• the desired compiletime declarative behaviour, to be able to declare when
a certain routine only accepts/expects a certain encoding.

• the ability to have compiletime type knowledge to rearrange expressions to
prefer a certain encoding result (see the performance paragraph) by using a
di�erent declaration (much like the Tiburón ansistring), if all components
are typed.

• In Tiburón mode, the string type is equal to TUTF16string, but can be
mixed with any of the other types.

• On implementation level, a single runtime implementation. No 3 ways of
overloading.

• The whole situation is then a bit analog to shortstring vs shortstring[]
(from a typing point of view). All RTL routines are var shortstring, and
accept all. However if you want to only support a certain size (like ex-
tensions), you can declare it using var s:shortstring[2]. But the unicode
equivalent would be expected encoding, not size. Also e.g. variant would
hold an FPC unicodestring, which is compatible without conversion to
utf8string, utf16string,utf32string

The main advantage of would be keeping the number of type dependant (not
the more general routines) down, but to be able to retain the compiletime typed
behaviour. Slowly I'm convinced this might be a doable way, but I need Florian's
input for that.

As a bonus, expanding this hybrid with Tiburón functionality is also possible,
with quite high Tiburón compat, at the expense of having two UTF-8 types:

• Implement the hybrid type as above. Only TUnicodestring only has the
base three encodings.

16

• Implement the Tiburón ansistring. utf-8 inclusive. This also includes the
codepage support then.

• In Delphi (Tiburón?) mode, the default unicodestring is an alias for TFlo-
rianString(talwaysutf16).

This trick allows to simply add Tiburón code under the relative IFDEFS, and
keep it working. And to gain maximum performance (avoid too much conver-
sions in one codepage) on Unix utf-8 people would could remove the Tiburón
�ags on a per unit basis after inspecting the encoding state of an unit.

The problems that I can think of, is that there is still a VAR problem, and the
type and conversion situation in the compiler might get complicated (a lot of
combinations), even though the number of overloads might be less.

0.3.5.1 Problems of hybrid: var

• VAR remains a problem, but afaik it is �xable.

Assume we have RTL routine that does

procedure stringroutine (var s:TUNICODESTRING);

begin

forceencoding(s,utf16); // code only can deal with utf16

process; // the utf16 processing code.

end;

and

var n : tUTF8String;

begin

{assign n}

stringroutine(n); // we can pass, since this is not a fully different type, but a TUNICODESTRING with a bit of afinity

// BUT: here n would be UTF16, a violation of the type declaration.

end

This means that the compiler should insert a forceencoding after passing a string
with encoding a�nity to a generic VAR parameter. I hope that is doable.

• As in Florian's original proposal the [] operator gets more expensive in
generic routines. In non generic (roughly equivalent to Rawbytestring in
Tiburón terms, but then also for UTF16) it is less of a problem, since the
typing �xates the granularity? This could o�er a nice solution in the sense
that high speed routines could be overloaded with typed equivalents for
speed, while not so interesting routines could rely on the �general� type
with runtime granularity.

17

	Introduction
	Tiburón
	The encodings
	Economics of the encodings
	Granularity of []
	Meaning 1: index means codepoints
	Meaning II: index means granularity of the encoding
	Meaning III: index means character
	Granularity conclusion

	Requirements
	Required ``new'' functions.
	The Windows ``W'' problem

	The proposals
	Felipe's proposal.
	Marco's proposal
	Aliases

	Florian's proposal.
	The biggest problem: can't declare what type to expect.
	Existing code
	The granularity
	Performance
	Alternate encodings.
	Florian's response
	The good points

	Yury's proposal
	The hybrid model
	Problems of hybrid: var

