
Creating a portable Pascal codebase.

Marco van de Voort

March 2, 2012

Current version: 0.04

Versioning
I’ve had comments on my (continued) use of the name “Borland”. Let me take this oppurtunity to explain that when I say
“Borlanbd” I mean Borland/Inprise/Devco/Codegear/Embarcadero, since I (still) use products that were release under all these
names.

A lot has happened since the original version. Kylix can be considered dead for all practical purposes nowadays, but with
XE2 Borland ventures again into multi-platform land. Tiburon will have a gigantic impact on anything that handles string. The
new 2.6.x series is much more Delphi compatible, and the 2.7.x series (trunk) is absorbing Unicode Delphi features.

v0.01 The original (2005) version without a version number.

v0.02 Updated in 2008

v0.02b minor updates in September 2009

v0.03 Additions during summer 2010

v0.04 Small updates february 2012

1 Introduction
There is a lot of (Object) Pascal code available on the web, usually for Turbo Pascal and Delphi. Since Free Pascal supports
both these dialects, most code should in theory be recompilable with FPC (and to a lesser degree with other compilers with the
appropiate Borland mode). The main showstopper problems are a too big dependancy on dos and 16-bit functionality (TP/BP),
or on the Visual part of the VCL (Delphi). A lot of Delphi code is also too Windows dependant for use on other platforms, but
this (the Windows dependance) is no real long term problem for FPC/win32. There can be a few small problems though because
not all Delphi winapi units are supported at the moment. Currently most code that can be shared between FPC and Delphi are
libraries that are not visual, but since Lazarus1 is maturing fast, this will improve in time.

In early 2000, I started to test FPC with Delphi code, mostly to test the new Delphi compability mode of FPC. Quite soon,
it turned out that the Delphi compability of the 1.0.x compiler series was too limited, so I switched to the development series
(1.1.x/1.9.x, which would become 2.0.x in the future). Since then I have kept on testing Delphi packages to work with FPC, to
test new features, libraries etc. The packages that were regularly tested for FPC compability are:

1. Jedi Winapi headers (current status: 99% working, most of the remain problems are related to dispinterfaces)

2. ICS networking components (current status: win32 works fine with recent release versions of both ICS and FPC, the
problems were in the preprocessor area and uses clauses mostly) This package pretty much was the first to get selected,
mostly because it was compatible with a lot of Delphi versions. Some work has been done on getting the Kylix port to run
on *nix platforms, but this is hard, since a lot of linux specific functionality and artefacts are exist, due to the heavy libc
unit dependance)

3. Jedi JCL (large parts working, but this is the most difficult package by far, since it is mostly a collection of all kinds of OS
dependant routines)

4. Decal, a STL substitute (compiles with fairly minimal changes, but hard to test without demoes)

5. Jedi SDL headers (Works pretty well)

6. Jedi Math

7. (2010+) ZEOS7

8. (2007+) Indy10

1Lazarus (http://lazarus.freepascal.org) is a graphical IDE/RAD for Free Pascal.

1

9. dcpcrypt

Other packages were tested on an incidental basis too. Because of all this testing, a set of common problems started to surface
which are usually not FPC specific. These problems are more about multiplatform and multicompiler design, specially related to
preprocessor (defines, ifdef’s) symbols, most of the others with adding units to the USES clause without thinking. Most packages
don’t seem to spend any effort to come up with a decent system behind the preprocessor symbols (DEFINE/IFDEF’s).

The most common problems while porting software occur in the following categories:

1. True multiplatform considerations, like processor and OS dependant code.

2. preprocessor symbols.

3. separation of general (Object) Pascal code and visual code. (widgetset dependant2 is a better term for this category)

... These problems are very common in the Delphi/Pascal world. Most can be avoided relatively easy in the early design stage
and hopefully this article increases programmers awareness regarding these issues.

2 A generic preprocessor design.
As said in the previous paragraph, one of the primary problems of existing Delphi packages3 is that there usually is no system
with respect to preprocessor defines.

Nearly each unit has some preprocessor defines and compiler switches in the first few lines of the unit. FPC needs a few
modifications here to put the FPC compiler in Delphi mode ({$mode Delphi}), if it is to compile delphi code without additional
commandline arguments. Usually there are some package specific defines too. The problem is that Delphi packages typically
duplicate the few defines they need in all units, often even directly using Delphi VER<xx> defines instead of using a central
includefile that defines properties.

The solution is as obvious as simple: a central include file that maps compiler versions to compiler and rtl properties.
Preferably two even, one for the libraries, and one (extra) for the demoes/examples with extra directives for final programs. The
average reader will probably frown on this trivial detail, but believe me, when porting, this very simple change saves an enormous
amount of work. Specially if this is carefully set up, and some standard problems are avoided. The rest of this chapter describes
a good way to do this, mostly in the form of do’s and don’ts.

This kind of solution is not about FPC compatibility per se. How more complex the Delphi tree becomes (Kylix, Tiburon,
.NET, 64-bit), the more worthwhile it is to put some effort into structuring defines.

Note that since the first version of this faq several Jedi projects have adapted to this principle. Examining e.g. the Jedi JCL
source is a good way to get an idea how to implement this in practice.

2.1 Do use a central includefile with defines in EVERY file
A lot of Delphi programmers have a natural aversion against includefiles. This probably stems from the fact that C uses them
heavily, and Borland also doesn’t really encourage the usage of includefiles. The gigantically complicated automake and autoconf
systems have often scared Delphi programmers into a “anything but that” kind of attitude.

However nearly each project that reaches a certain size starts to use a central includefile when faced with multiple compilers
and/or -versions. The contents vary, but usually contain defines that optionally add extra debugging code, turn parts off etc.

The main reason for including the central includefile by default in every file, is that when creating a certain package for
compiler A, you usually can’t predict in which units the includefile is also needed in the future. E.g. when somebody tries to
implement compiler/rtl/OS dependant parts for a compiler (version) B, with as little changes as possible. It is simpler to simply
give up administrating why unit X needs the includefile, and unit Y doesn’t, and simply include it everywhere. This avoids
creeping-in of local defines via the backdoor.

2.2 Don’t make your main sourcecode directly dependant on Delphi version defines
A lot of Delphi packages directly use Delphi version defines in their source code, like

{$ifdef ver90}
Dosomething;
{$else}
Dosomethingelse;
{$endif}

Some others hide this a bit by using defines like Delphi4up or Delphi4plus , (the Mike Lischke style that was also used
in older Jedi includefiles) but that is the same thing in practice. Conditional code should never interact directly with the Delphi
versions. Why? The main reason is that FPC is Delphi 2 in some respect, and Delphi 7 in another respect, but also for Delphi
usage this is a bit dangerous; consider the following bit of code:

2A widget is the general term for what is often called “a control” in windows terminology.
3Some of the above mentioned packages already changed their ways, when they started implementing FPC compability

2

{$ifdef delphi4up}
something=array of integer; // dynamic array
{$else
something =^integer; // workaround using pointers;
{$endif}

What if we encounter a problem with the dynamic array support for this particular construct in say Delphi 5? It is hard to disable
dynamic arrays usage for Delphi 5 alone, since the source code assumes D4+ can use dynamic arrays, and all defines that interact
with ver<x> defines and derived delphi4plus variants will have to be checked to make exceptions for Delphi 5. Runtime
library changes are even more problematic. Sometimes a feature got added with D3, changed to use D4 features like int64 and
cardinal, but moved to another unit with D6 or D7, and will be different again with .NET.

In other words: the main problem is that a certain ver<x>
define stands for a lot of different compiler properties, and the source loses information if you use these defines directly. This

problem is illustrated in the following similar source bit:

type
{$ifdef Delphi4plus}

something = array of integer;
myfunc = function (something:integer=50):pointer;

{$else
something = ^integer;
myfunc = function (something:integer):pointer;

{$endif}
..
..
Uses
{$ifdef Delphi4plus}

variants
{$endif}
,windows;

While this example might not be ideal, it does illustrate the basic problem, Delphi4plus define is used to trigger both default
parameters, variants and dynamic arrays u4sage. Usually the (mis)usage of the ver<x> defines are not limited to language fea-
tures, but also for identifiers exported by system, sysutils and other basic units. It is simply impossible to automatically determine
if a certain ifdef is for an identifier, a language feature or something else, without knowing all compilers and compilerversions
involved intimately.

The solution is as obvious as simple. Each often used capability of the compiler-library system gets its own preproces-
sor symbol, and the mapping between ver<x> defines and these capabilities is done in the central include file. So every-
thing after Delphi 4 defines HAS_DYNAMIC_ARRAY, HAS_DEFAULT_PARAMS etc. This allows a non Delphi compiler
to define e.g. HAS_DEFAULT_PARAMS, but not HAS_DYNAMIC_ARRAY, something that is not possible when ver<x>
is used directly in source. But it also allows to disable a certain feature for a certain Delphi version (e.g. when it is bugged)
without having an effect on the other capabilities of that version, even temporarily for testing purposes only (simply comment
{$DEFINE HAS_DYNAMIC ARRAYS} in the {$ifdef ver120} part of the central includefile)

A typical includefile of a project that uses capabilities instead of Delphi versions might look like this:

{$ifdef ver80}
{$define i386}
{$define CPU32} // 32-bits CPU
{$define ENDIAN_LITTLE}
{$define has_classes}
{$define win16}
{$endif}
..
..
{$ifdef ver140}
{$define has_dynarray}
{$define has_defparam}
{$define i386}
{$define ENDIAN_LITTLE}
{$define CPU32}
{$define win32}
{$define has_stream_permissions}
{$endif}
..
..
{$ifdef FPC}

{$mode Delphi} // put in Delphi mode

3

{$ifndef ver1_0} { only in FPC version 2+}
{$define has_dynarray}
{$define has_defparam}
{$define has_interface}

// fpc already defines i386, cpu32/CPU64 and ENDIAN_LITTLE/ENDIAN_BIG for all platforms
{$endif}
{$endif}

The earlier bit of source code then becomes:

type
{$ifdef HAS_DYNARRAY}

something = array of integer;
{$else
something = ^integer;

{$endif}
{$ifdef HAS_DEFAULT_PARAM}
myfunc = function (something:integer=50):pointer;
{$else}
myfunc = function (something:integer):pointer;
{$endif}
.
..
Uses
{$ifdef HAS_VARIANTS}

variants
{$endif}
,windows;

It is almost too trivial to mention isn’t it? However it really saves enormous amounts of time porting packages set up like this to
other compilers, custom runtime and classes libraries (VCL substitutes) etc etc. Also keep in mind that porters are often not as
familiar with the package as you, and little things that seem trivial to you, might not be for them. It also helps tremendously if
e.g. FPC has one feature in the development version, but not yet in the release version.

2.3 Don’t use {$ifdef Linux} if you mean {$ifdef Unix}
Kylix users often put Kylix specific changes under {$ifdef linux}. Don’t fall for this trap, since this often causes both linux kernel
specific code and general unix functionality as trivial as backward vs forward slashes under the same {$ifdef linux}, which is far
to generic.

Include {$ifdef Linux}{$define Unix}{$endif} in your central includefiles, and use Unix if it is generic. Better
yet, use {$ifdef Unix} even if you don’t know for sure if it is linux specific, since there really isn’t that much linux specific
in the average application source.

2.4 Don’t assume too much about {$else} cases.
Don’t use constructs like:

{$ifdef win32}
Do_My_Windows_Thing;
{$else}
Do_My_Linux_Thing;
{$endif}

This is even a bigger don’t than the previous one. What to substitute this construct with, depends on how secure you want it to
be. As usual, the best way is also the most work:

{$undef platformcheck}
{$ifdef Win32}
{$define platformcheck}
Do_My_Window_Thing;
{$endif}
{$ifdef Linux}
{$define platformcheck}
Do_My_Linux_Thing;
{$endif}
{$ifndef Platformcheck}
{$info this code must be implemented for this platform}
{$endif}

4

However you would make most people already very happy if you just used:

{$ifdef Win32}
Do_My_Window_Thing;
{$endif}
{$ifdef Unix}
Do_My_Linux_Thing;
{$endif}

This way, people porting the source to a new platform will have to quickly check most ifdef linux/unix clauses. But they’ll
probably have to anyway.

2.5 An alternate approach
Another possible solution is using an external preprocessor. Some packages tried this approach, but the problem is that building
the source conveniently means also porting the preprocessor. Also, this forces Lazarus/Delphi users to the commandline. I don’t
really like this solution, but I can imagine modest use in special cases can have its advantages. Specially concerning uses clauses,
which simply tend to become a mess. Also large bodies of EXTERNAL declarations can sometimes become much readable
without the {$ifdef win32}stdcall;{$else}cdecl;{$endif} appended to every declaration.

The limited FPC macro facility can also be used for these purposes, (by defining the macro’s in the central includefile), but
this approach has the fundamental problem that it is FPC only.

Combining these two could be a step forward (use FPC macros , but expand them by external preprocessor for non FPC
compilers). Since FPC runs on the most targets by far, this means the preprocessor only has to run on linux/i386 and win32.

3 OS and widget set independant design.
90% of making a certain package operating system independant lies in starting out with OS independance in mind, not in
incorporting a few changes after the main development is done. While this sounds like a cliche, it is like with many cliche’s: it
is based on real life and generally there is a lot of truth in it.

OS independance is not really something fundamentally different, but mainly a state of mind. Separating OS (in)dependant
code, widget dependant and independant code etc. What is commonly considered as OS independance is only the implementation
of this state of mind.

Note that Kylix is a particular problem. While Kylix is brilliant from the Borland perspective (keep as much win32 Delphi
code running as possible), it often conceals the real truth: Unix is fundamentally different from win32. Kylix is often also too
linux specific, which is sane from a Borland perspective (they’ll probably never support anything else than Linux), but might not
be the best solution to get the most of your codebase. However there are two ways of looking at this:

• “the glass is half empty”: Linux is totally different from win32.

• “the glass is half full”: If you want to support Linux+win32, then it is only a really small extra effort to support most other
platforms too. Specially if you start with that attitude from the beginning.

The most important thing is to isolate five basic types of code as much apart as possible.

1. widget set dependant code.

2. OS dependant code

3. Architecture dependant code (processor independant)

4. Generic, in general platform independant code.

5. Compiler implementation dependant code

Specially the second and third category can mix. So there can be some OS dependant code that is also architecture dependant,
and some that is not.

Widget set dependant This class of code is the easiest type to define: it is simply code that depends on widget set. In other
words, GUI code, code that uses X11, QT, GTK, win32 GDI or Aqua, directly or indirectly. There is a slight gotcha though,
code depending on unit FORMS is usually considered GUI code even if it only uses allocatehwnd or the application object,
since unit forms is the core of the GUI part of the VCL. Also, some widgetsets (Win32, Aqua) are tied to one platform and
one architecture in practice, and some OS dependant entanglement might be hard to avoid in these cases.

OS dependant code OS dependant code simply uses OS dependant features. So unit Windows, ActiveX (the whole WinApi
set), Kylix unit Libc etc. However there are gradations when you think of Operating systems in terms of related families.
A feature might not be unique for one operating system alone, but for a whole group. The picture below should illustrate
this a bit. Specially the difference between Unix and Linux is a mean one, as already discussed.

5

The picture should be read from top to bottom; POSIX systems have something in common, UNIX systems have a bit more in
common, BSDs have even more in common etc. (for the upper levels think about having driveletters or not, forward or backward
directory separator, case sensitive/insensitive/preserving filesystem level etc. This is partially what makes Windows and Dos
similar) The picture is not really historically correct, but is only meant as the illustration of a possible classification of platforms
from a programming perspective. The picture is a gross simplification, and just to give a rough idea, and to show that families
(“Unix” or “Windows”) are quite complex internally, listing only platforms that are either FPC targets or of general interest. Also
the versioning is way more complex than shown above.

One can also imagine GUI widgetset as an added dimension perpendicular to the plane of the above picture. This is not
just for Linux (X11,GTK,QT,WxWidgets etc), but also for e.g. OS X (Carbon, COCOA), .NET (Winforms 1.x, 2.x and WPF),
Win32/64 (win32 native (GDI), MFC).

Architecture dependant code is processor dependant code. Usually assembler, but there are differences between processors
that affect the pascal code too:

• endianness (byte ordering, are values stored with the byte with the highest value first, or not)

• 32-bit vs 64-bit architecture (pointers become 64-bit, and might not fit a simple (long) integer anymore, record/structure
sizes change)

• alignment requirements (structures/record size change)

• calling convention (not all calling conventions are available for all processors and compilers)

• size of e.g. floating point registers determines which floating point types have decent performance, and how wide
they are. Specifically “extended” can be 64,80 or 128 bits. Avoid COMP as the plague, it is too intel specific, and
doesn’t have much advantages, use int64 as much as possible.

Generic code is code that isn’t really dependant on the OS and doesn’t heavily depends on architecture. This doesn’t mean it
doesn’t do any I/O at all, but more that all performed I/O is done via OS independant units (think system,sysutils,classes)

Compiler dependant code This relatively small class consists of code that depends on compiler internals. Typical examples are
directly accessing the VMT, or assuming too much about the size of a set, calling conventions and exploiting knowledge
about the binary format of .EXE files (lowlevel RTTI (introspection), accessing debug metadata and/or sections)

3.1 Directory structure.
Besides conditional compilation, includefiles can also help sorting out the complexity of code with different portability aspects.
By simply keeping OS or architecture specific code in a separate directory, selection of the right piece of code is then as easy
as making sure the right directories are included while building. This can reduce complexity and amount of ifdefs somewhat.
The main problem of this approach is that the way a project is built is not standarized. FPC typically uses GNU Makefiles
(though some external projects use scripts/batch files), while Delphi has a build system depending on all kinds of project and
configuration files. (which is usually horribly version, installation and OS dependant)

3.1.1 FPC RTL/packages directory structure

An example of how to organize this is the FPC directory structure used in the RTL and packages, that looks like this ($OS is the
OS we compile for, $CPU the architecture):

• <pachagename>/$OS (OS dependant stuff goes here)

• <packagename/$OS/$CPU (OS and arch dependanty stuff. Startup code, syscalls, asm interfacing with the OS etc)

• <packagename>/$CPU (CPU specific, but not OS specific, math stuff, strings and language helpers mainly)

• <packagename>/inc (general totally independant include directory. Both .inc as units)

6

• <packagename>/unix (general shared unix code. Usually 90% of all code for Linux/FreeBSD/ OS X is Unix generic when
properly typed and parameterised)

• <packagename>/bsd (if it is a codebase with a lot of OS dependancies, it is even worthwhile to factor out common BSD
code, with 4-5 BSD supported)

One can probably easily imagine adding directories for widgetsets (win32, gtk, qt on a basic level, or CLX, VCL, LCL on a
higher level) too.

This scheme works very well for libraries that wrap OS dependant functionality in an OS independant way. The avg app can
probably do with a subset of these, depending on its nature. (e.g. win32/, unix/, vcl/, clx/ and lcl/). Small differences can better
be IFDEFed, but try to do this as general as possible.

4 Project building
As said earlier, the exact build process varies significantly with the compiler, Delphi integrates package/project support in the
IDE and uses several files for this, both global (think package registry) and project specific. Worse, these systems are not 100%
the same amongst versions.

FPC uses a separate program, GNU Make, and uses a template Makefile.fpc in each build directory that is expanded to the
real Makefile by the generator program fpcmake.

At the current time, I’m not aware of efforts to make project building (more) compiler independant. There are two possible
approaches:

1. Create a new package information fileformat, and generate both package files from it. (probably D4+ only, since older
version have binary package formats)

2. Try to write converters (makefile.fpc to .dpk and vice versa)

Both are not trivial, however can be simplified considerably by moving as much directives as possible to the source. (and of
course to the central include file would be best:-) However this is a rough idea, I’d need to know the build system of Delphi
much more intimately before pursuing something like this. Waiting till FPC has packages would be wise also, to avoid having to
rework the system too soon.

5 Missing/buggy language features in FPC
General problems, or language syntax for which bugs have been reported, but the exact status is not known. These are currently
for all known versions:

1. @@xx_is not supported Procvars using double “at” sign are not yet supported in 1.9.2 (I believe now it is supported)

2. The exact state of the “reintroduce” support is not known. (it’s ok, it only suppressed a warning)

3. Packages are still missing (see http://wiki.freepascal.org/packages http://wiki.freepascal.org/packages for
an overview. Shared linking beyond C level in general is poor.

4. In general, FPC is mostly on D7 language level with operator overloading and inline added from later versions.

5.1 FPC 2.0.x
1. Missing “implements” functionality (delegation)

2. Missing packages

3. Missing dispinterfaces and dispid

4. Missing custom variants

5. Widestrings and variants need more testing. Widestrings are still missing a lot of RTL routines. Some of the variant
wrapper classes are also missed.

6. Currency type used to be on the “buggy” list too. However there has been quite some work on this recently, so it could be
ok.

5.2 FPC 2.2.x
1. Dispinterfaces and dispid are mostly working. (or at least parsed correctly)

2. Initial generics support (own syntax, FPC started on this pre Tiburon) that somewhat matured during the 2.2.x cycle.
Enough to have e.g. generic container types, but not for advanced generic programming.

3. automated modifier is still missing?

7

http://wiki.freepascal.org/packages

5.3 FPC 2.3.x
1. Generics further improved

2. TUnicodeString as a basis for Tiburon unicode string support has been started. It works initially, but is currently internally
slightly different from Tiburon, which makes the Tiburon codepage functionality of Ansistring hard to implement. Will
probably changed, but development stalled.

3. Dynamic dispatch, customvariants and olevariant improving. Implements delegation still support not entirely complete.

4. Delegation is starting to work but several often used constructs are not implemented yet.

5. Automated modifier is still missing?

5.4 FPC 2.4.x
1. Resources more Delphi like

2. (from 2.4.2) some D2006 features like for..in added

3. Rudimentary TUnicodestring

5.5 FPC 2.5.x/2.6.x
1. Set packing more delphi like

2. COM handling improved, but e.g. SEH is still lacking

5.6 FPC 2.7.x
1. Unicodestring support up to Delphi 2009+ level?

6 Kylix/Libc unit issues
The problem with Kylix is that it is more designed to make recompiling (Win32) Delphi apps for Linux easy than to provide a
platform to do generic Unix development. From Borlands perspective, this makes sense, but using Kylix-specific units (mainly
unit libc) without wrapper seriously decreases portability.

Unit libc is a direct translation of the libc headers for (meanwhile ancient) Linux/i386 installations, and thus a lot of unit libc
functionality is Linux only, or reveals linux specific unneeded details. There is no attempt at cleaning up the interface presented to
the end user. While in theory one could try to emulate certain linux specific calls, the libc-interface was considered too inheritly
linux specific and unclean that it was decided to only support unit libc as legacy unit on Linux/i386. This was partially also to
avoid the libc unit becoming Kylix uncompatible in many very small ways. Alternatively the old FPC Unix rtl was modernized
into something better portable for all Unixy ports. (see the unixrtl.pdf document)

The best way to deal with Kylix libc unit dependancies are:

• Minimize any use of unit libc if possible (e.g. use SysUtils unit and other such units as much as possible).

• It is often better to create a handful of compatible wrapper units for Kylix then the other way around to try to port the Kylix
libc units to FPC. So creating a baseunix, termio, dynlibs and users wrappers units for Kylix can often make your source
management easier, and keep unnecessary ifdefs from the main source.

• If for some odd ball reason you have to use libc, try to keep the libc unit dependancy localised to as little units as possible.
E.g. use a wrapper if you want to use stat64 or so. <functionname>64 functions are a linuxism (and i386 even)

• Please don’t ask to port libc to other targets than linux/i386. It won’t happen.

• Be very strict about Unix typing, don’t assume too much about the sizes of Unix types.

• Do not directly use the dynamic library functions of unit Libc. Always employ a wrapper, preferably modelled or equal to
FPC’s dynlibs unit (which emerged after problems with Jedi SDL related to dyn loading)

• Do not use the user/group/password functions in unit libc, use the (2.2.2+) package users instead.

• Do not use iconv functions from libc, but use “iconvenc” package (2.2.3+)

• Avoid using messaging systems on *nix. While they may work fine on one type, it is nearly impossible to write generic
*nix code with it.

• In general try to avoid exploiting special Linux features to emulate windows behaviour. Make sure the functionality is
portable first (e.g. check the Open Group site) , and if you need it despite portability concerns, encapsulate it properly.

• See also http://wiki.freepascal.org/libc_unit

8

http://wiki.freepascal.org/libc_unit

7 Misc problems
Comments before {$mode Delphi} must be balanced Only a {$mode Delphi puts FPC in Delphi mode. So any comments

before this command (or the includefile that contains it) must be balanced, like in TP. This is a very common problem.

The exact size that a set occupies can be different FPC currently only supports sets with size 4 and 32 bytes. So everything
smaller than 33 elements is 4 bytes in size, 33-256 elements is 32 bytes in size. Also the elements are always counted
starting from ordinal value zero. In other words, a set of 20..40 counts as 41 elements (0..40), even though only 21
(20..40) are used.

Wintypes, Winprocs These old Delphi 1 units can still be used in Delphi. The project file in Delphi aliases these to unit
windows. However FPC doesn’t have this (aliasing) feature, and doesn’t have a project system like this on the compiler
level. D1 and win3.x are really too obsolete to create an ugly hack to do major development to support this construct. The
best way is to always use unit Windows as much as possible, unless Delphi 1 compability is really needed (ICS is one of
the few packages that still support D1), and then better ifdef the non D1 situation to use unit “windows”

Avoid paths in USES clauses Delphi (and FPC) can use syntax like uses xxx IN ’ c:\windows\interfaces\sources\include\headers.pas’;
This is a plague when porting for obvious reasons, so better avoid it. Relative paths are slightly less evil, but as a whole,
packages that use this feature are much more costly to reorganise. Note that since FPC and Delphi have separate build
systems above the basic <compiler> <file> level (Delphi with .dpk, FPC using gmake to simplify the buildprocess of large
pkgs). Often the buildprocess inner workings are entangled with the directory structure. Because of this, the buildprocess
always needs some work, and hardcoded paths add an unnecessary complication to deal with.

Filenames The best is to keep filenames lowercase. This because on case sensitive filesystems, Free Pascal also checks the
all-lowercase name, and you don’t need to synchronize casing in all uses clauses to match the filename.

Set sizes The size of sets is only delphi compatible in 2.5.1+ http://wiki.freepascal.org/User_Changes_Trunk#
Sizes_of_sets_in_TP.2FDelphi_mode

Real48 {$realcompatibility on} doesn’t exist and real is always equal to double. Using operator overloading conversions from
a real48 record to double exists.

path_of_exe Many operating systems do not allow to retrieve the directory of the exe (e.g. Paramstr(0) or application.exename.).
Linux emulates it partially (depending on the used filesystem), and OS X only supports it when the application is started
using the full path. Even on Windows this is less useful as it used to be. (since if in program files/, Vista/W7 probably
won’t let you write to it.) What to substitute it with is hard, since the alternatives depend on the nature of application
and the chosen operating system’s filesystem layout. The operating system’s application guidelines might provide a clue.
A typical *nix solution is a configuration file, either global (/etc/myapp.conf) or local (~/.myapp.conf), that specifies the
location other files and/or directories. A different solution that is sometimes used on *nix is hardcoding a prefix during
build time. Keep in mind that in nearly every operating systems nowadays the rules for reading and writing files (UAC!)
are different, and always separate readonly paths and files from (read/)write ones.

Sleep(0) Using Windows sleep(0) forces a contextswitch, without further delay (giveuptimeslice). Do not assume that all meth-
ods of sleeping/delaying do the same.

Winsock Endianess routines Often Delphi sources use endian conversion (htons etc) from unit winsock. FPC has a completely
set of endianess routines in the system unit, no need to drag in some sockets units for that.

Unix typing The API of Unix and unixlikes is different from Windows. The standard for the api (POSIX) is a set of minimal
requirements, not a tightly fitting

Handle types Windows uses an unified handle type, everything is THandle, and specific handle types like “HModule” are aliases
for THandle. However, other platforms typically don’t follow this design, and most handle-types are for one specific
purpose only. Avoid using Windows handle types in generic code (another bad habit encouraged by Kylix), because it
introduces hidden assumptions. Define proper aliases for it in some abstracting unit and use those. Failing to do so can
lead to hard to trace bugs, specially on 64-bit non windows, where some handles might scale with pointer size, and some
not. As a bonus, you need to import unit windows much less often, which further saves on ifdefs

7.1 Be very picky about what to put in the USES statement
Compared to the good ole Turbo Pascal days, the USES statements in publically available Delphi code are often not cleaned up.
Units are USEd that aren’t used (:-)), and that has the potential to unnecessary complicate porting. If the unit never used at all, it
may even increase your .exe size unnecessarily, because (at least AFAIK) unit initialization/finalization code is always run, and
never eliminated by smartlinking. Typically when porting problems of this type arise, the units in questions are winapi units, or
VCL units like Graphics. See also the section about Kylix.

Sometimes it is easier to put a few type aliases in some central unit, then conditionally import a certain unit everywhere.

9

http://wiki.freepascal.org/User_Changes_Trunk#Sizes_of_sets_in_TP.2FDelphi_mode
http://wiki.freepascal.org/User_Changes_Trunk#Sizes_of_sets_in_TP.2FDelphi_mode

	Introduction
	A generic preprocessor design.
	Do use a central includefile with defines in EVERY file
	Don't make your main sourcecode directly dependant on Delphi version defines
	Don't use {$ifdef Linux} if you mean {$ifdef Unix}
	Don't assume too much about {$else} cases.
	An alternate approach

	OS and widget set independant design.
	Directory structure.
	FPC RTL/packages directory structure

	Project building
	Missing/buggy language features in FPC
	FPC 2.0.x
	FPC 2.2.x
	FPC 2.3.x
	FPC 2.4.x
	FPC 2.5.x/2.6.x
	FPC 2.7.x

	Kylix/Libc unit issues
	Misc problems
	Be very picky about what to put in the USES statement

