
XTDFPC supplied units :
Reference guide.

Reference guide for additional units package XTDFPC .
1.0

March 29, 1999

Marco van de Voort
Thomas Schatzl

Contents

1 XtdFPC package/ The Toolkit 11

1.1 Installation . 11

1.1.1 Requirements . 11

1.1.2 platforms . 11

1.1.3 FPCversions . 12

1.2 Internals . 12

1.2.1 Conditionals . 12

1.2.2 Procedure and unit names . 12

1.3 Copyright and license data . 13

1.3.1 The GNU General Public Licence 13

1.4 These docs . 19

2 ECRC32 unit 20

2.1 general notes . 20

2.2 Types and Constants . 20

2.2.1 Poly32 . 20

2.3 procedures and functions . 20

2.3.1 CreateCRC32Table . 20

2.3.2 CalcCRC . 21

2.3.3 AddCRC . 21

2.3.4 InvertCRC . 21

2.3.5 example . 21

3 EDate Unit 23

3.1 Types and constants . 23

3.1.1 Months and Dows . 23

3.1.2 Ceremony . 23

3.2 Procedures and functions . 24

3.2.1 LeapYr . 24

3.2.2 DayNr . 24

3.2.3 DayNrBack . 24

1

CONTENTS CONTENTS

3.2.4 DOW . 24

3.2.5 ToUnix . 24

3.2.6 FromUnix . 25

3.2.7 WeekNr . 25

3.2.8 Easter . 25

3.2.9 DatiToStr . 25

3.2.10 MovableCeremony . 26

4 The EDirTree unit. 27

4.1 Introduction . 27

4.1.1 Objectives while implementing the unit 27

4.1.2 procedure groups . 28

4.2 Types and constants . 29

4.2.1 procedure types . 29

4.2.2 FilAttr . 29

4.2.3 TreeBuildingTypes . 29

4.3 Variables . 30

4.3.1 DirsToo . 30

4.3.2 Statisticsvariables . 30

4.3.3 ClusterSize . 30

4.4 Procedures and Functions . 30

4.4.1 SetFAttr . 30

4.4.2 ClearStat . 31

4.4.3 FileScan . 31

4.4.4 BuildTree . 32

4.4.5 SearchForFiles . 32

4.4.6 ScanTree . 32

4.4.7 KillFileTree . 33

5 EDos 34

5.1 Types and variables . 34

5.1.1 CMOSRec . 34

5.1.2 TSwapInfo . 37

5.1.3 Drv . 37

5.1.4 UART . 37

5.1.5 SubstExpand . 37

5.2 Procedure and functions . 38

5.2.1 GetSerial . 38

5.2.2 GetVolume . 38

5.2.3 DriveType . 38

5.2.4 NrFloppies . 39

2

CONTENTS CONTENTS

5.2.5 NrFixedDisks . 39

5.2.6 LastDrv . 39

5.2.7 TrueName . 39

5.2.8 GetLongPathName . 40

5.2.9 GetShortPathName . 40

5.2.10 ClusterSize . 40

5.2.11 NrDrives . 40

5.2.12 GetSwapData . 40

5.2.13 WinVer . 41

5.2.14 GenerateShortName . 41

5.2.15 GetCMOS . 41

5.2.16 Installed . 41

5.2.17 TestUART . 42

5.2.18 IsDevice . 42

6 The EFIO unit. 43

6.1 Types and constants . 43

6.2 Functions and procedures . 43

6.2.1 ArchiveMethod . 43

6.2.2 FileExists . 44

6.2.3 WrHex . 45

6.2.4 WrLngHex . 45

6.2.5 WrOct . 46

6.2.6 WrLngOct . 46

6.2.7 WrBinary . 46

6.2.8 WrLngBinary . 46

6.2.9 ExtensionPos . 47

6.2.10 RemoveExtension . 47

6.2.11 AddExtension . 47

6.2.12 ChangeExtension . 48

6.2.13 WrStrAdj . 48

6.2.14 Touch . 48

6.2.15 DelDir . 48

6.2.16 FileAppend . 49

6.2.17 MkFullDir . 49

6.2.18 WrArrChar . 49

7 ELib 50

7.1 Types . 50

7.1.1 CHARSET . 50

7.2 Procedures and Functions . 50

3

CONTENTS CONTENTS

7.2.1 FillCard . 50

7.2.2 ScanR . 51

7.2.3 ISqrt . 51

7.2.4 GetKey . 51

7.2.5 SetCursorSize . 51

7.2.6 GetCursorSize . 51

7.2.7 set fs to dosmem . 52

8 The EMP3 unit. 53

8.1 How the MP3 Check is implemented 53

8.2 Types and constants . 53

8.2.1 Genre byte . 54

8.2.2 Genre . 54

8.2.3 ID3 constants . 54

8.2.4 Gettag errorcodes . 54

8.2.5 BitRates . 54

8.2.6 SampleFreq . 55

8.2.7 ID3Tag . 55

8.3 Procedure and functions . 55

8.3.1 GetTag . 55

8.3.2 SetTag . 55

8.3.3 IsMp3 . 56

8.3.4 DumpTag . 56

8.3.5 DumpIdentifier . 56

9 The EPasStr unit. 57

9.1 Functions and procedures. 57

9.1.1 LTrim . 57

9.1.2 RTrim . 57

9.1.3 KillChar . 58

9.1.4 KillBChar . 58

9.1.5 StripChar . 59

9.1.6 KillChrTot . 59

9.1.7 AppendBackSlash . 59

9.1.8 ReplaceChar . 60

9.1.9 CharPos . 60

9.1.10 NextCharPos . 61

9.1.11 RCharPos . 61

9.1.12 NextRCharPos . 62

9.1.13 CharPosSet . 62

9.1.14 NextCharPosSet . 62

4

CONTENTS CONTENTS

9.1.15 StripDoubleChar . 63

9.1.16 LowerCase . 63

9.1.17 UpperCase . 64

9.1.18 StrToBinary . 64

9.1.19 StrToOct . 64

9.1.20 StrToHex . 65

9.1.21 BinaryToStr . 65

9.1.22 OctToStr . 65

9.1.23 HexToStr . 66

9.1.24 LGrow . 66

9.1.25 RGrow . 67

9.1.26 StrStr . 67

9.1.27 Item procedures . 67

9.1.28 GetBetween . 68

9.1.29 CommaStr . 69

9.1.30 CompressTabs . 69

9.1.31 ExpandTabs . 69

9.1.32 Invert . 70

9.1.33 RPos . 70

9.1.34 ReplaceLast . 71

9.1.35 Replace . 71

9.1.36 LeftStr . 71

9.1.37 RightStr . 72

9.1.38 MidStr . 72

9.1.39 Slice . 72

9.1.40 Match . 73

10 The EWindow unit. 74

10.1 unit EWindow . 74

10.1.1 Additional remarks, bugs and principles 74

10.1.2 Project status . 76

10.1.3 EWindow internal . 77

10.1.4 Error handling . 78

10.2 Types . 79

10.2.1 Styles . 79

10.2.2 Coordinates . 79

10.2.3 WinType . 79

10.2.4 WinDef . 79

10.3 Variables . 80

10.3.1 Height and Width . 80

5

CONTENTS CONTENTS

10.3.2 FullScreen . 80

10.4 Functions and procedures . 80

10.4.1 WinOpen . 80

10.4.2 WinClose . 81

10.4.3 SetTitle . 81

10.4.4 Use . 81

10.4.5 Hide . 82

10.4.6 UnHide . 82

10.4.7 Change . 82

10.4.8 WinMove . 83

10.4.9 Clear . 83

10.4.10 WinClone . 84

10.4.11 WrapWrite . 85

11 Farmem Unit 86

11.1 Class defintions . 86

11.1.1 tdosmemb . 86

11.1.2 tdosmemw . 86

11.1.3 tdosmeml . 87

11.1.4 tfarmemb . 87

11.1.5 tfarmemw . 87

11.1.6 tfarmeml . 88

11.2 Predefined variables . 88

11.2.1 tdosmem based variables . 88

11.2.2 tfarmem based variables . 88

12 The Memory Unit 89

12.1 FEATURES . 89

12.2 BACKGROUND . 89

12.3 SYSTEM REQUIREMENTS . 89

12.4 PROGRAMMING LANGUAGE . 90

12.5 Types of the memory unit . 90

12.5.1 Mem Op (enumeration) . 90

12.5.2 DWORD . 91

12.6 Memory Functions . 91

12.6.1 memcpy . 91

12.6.2 memset . 92

12.6.3 memchange . 92

12.6.4 memchangeValue . 92

12.6.5 seg memcpy . 92

12.6.6 seg memset . 93

6

CONTENTS CONTENTS

12.6.7 seg memchange . 93

12.6.8 seg memchangeValue . 93

13 DPMI Unit (DPMI 0.9) 94

13.1 Protected mode . 94

13.2 The DPMI Interface . 95

13.3 The DPMI unit . 95

13.4 DPMI unit function descriptions . 96

13.5 Types and Constants . 96

13.5.1 Type : Descriptor . 96

13.5.2 Type: Registers . 97

13.5.3 Type: Flags constants . 97

13.5.4 Type: PM Addr . 97

13.5.5 Type: RM Addr . 97

13.5.6 Type: MemInfoBuf . 98

13.5.7 Variable: Dpmi Error . 98

13.6 DPMI functions and procedures . 98

13.6.1 Error Handling . 99

13.6.2 dpmi set error handler . 99

13.6.3 Initialization services . 99

13.6.4 dpmi get cpu mode . 99

13.6.5 LDT management services . 100

13.6.6 dpmi allocate ldt descriptors 100

13.6.7 dpmi free ldt descriptor . 100

13.6.8 dpmi segment to descriptor 101

13.6.9 dpmi get next selector increment value 101

13.6.10 dpmi get segment base address 101

13.6.11 dpmi set segment base address 102

13.6.12 dpmi get segment limit . 102

13.6.13 dpmi set segment limit . 102

13.6.14 dpmi get descriptor access rights 103

13.6.15 dpmi set descriptor access rights 103

13.6.16 dpmi create code segment alias descriptor 103

13.6.17 dpmi get descriptor . 104

13.6.18 dpmi set descriptor . 104

13.6.19 dpmi allocate specific descriptor 104

13.6.20 Memory management services 105

13.6.21 dpmi get free memory information 105

13.6.22 dpmi allocate memory block 105

13.6.23 dpmi free memory block . 106

7

CONTENTS CONTENTS

13.6.24 dpmi resize memory block . 106

13.6.25 Physical address mapping . 106

13.6.26 dpmi physical address mapping 106

13.6.27 DOS memory management 107

13.6.28 dpmi allocate DOS memory block 107

13.6.29 dpmi free DOS memory block 108

13.6.30 dpmi resize DOS memory block 108

13.6.31 Interrupt services . 108

13.6.32 dpmi get rm interrupt . 109

13.6.33 dpmi set rm interrupt . 109

13.6.34 dpmi get exception handler 110

13.6.35 dpmi set exception handler 110

13.6.36 dpmi get pm interrupt . 111

13.6.37 dpmi set pm interrupt . 111

13.6.38 Virtual interrupt state functions 111

13.6.39 dpmi get and disable virtual interrupts 112

13.6.40 dpmi get and enable virtual interrupts 112

13.6.41 dpmi get virtual interrupt state 112

13.6.42 Translation services . 113

13.6.43 dpmi simulate rm interrupt 113

13.6.44 dpmi call rm procedure with retf frame 113

13.6.45 dpmi call rm procedure with iret frame 114

13.6.46 dpmi allocate rm callback . 114

13.6.47 dpmi free rm callback . 114

13.6.48 Page locking services . 115

13.6.49 dpmi lock linear region . 115

13.6.50 dpmi unlock linear region . 115

13.6.51 dpmi mark rm region as pageable 116

13.6.52 dpmi relock rm region . 116

13.6.53 dpmi get page size . 116

13.6.54 Demand paging performance tuning services 117

13.6.55 dpmi mark page as demand paging candidate 117

13.6.56 dpmi discard page contents 117

13.6.57 Miscellaneous services . 118

13.6.58 dpmi get version . 118

13.6.59 Commonly used combinations of the above 118

13.6.60 create selector . 118

13.6.61 change selector . 119

13.6.62 free selector . 119

13.6.63 get linear address . 119

8

CONTENTS CONTENTS

13.6.64 map physical memory . 119

13.6.65 intr . 120

13.6.66 realintr . 120

13.6.67 lock data . 120

13.6.68 lock code . 121

13.6.69 unlock data . 121

13.6.70 unlock code . 121

13.6.71 Segment registers access . 121

13.6.72 CSeg . 122

13.6.73 DSeg . 122

13.6.74 DSegAlias . 122

13.6.75 ESeg . 123

13.6.76 FSeg . 123

13.6.77 GSeg . 123

13.6.78 SSeg . 123

13.6.79 Port access . 124

13.6.80 outportb . 124

13.6.81 outportw . 124

13.6.82 outportl . 124

13.6.83 inportb . 125

13.6.84 inportw . 125

13.6.85 inportl . 125

13.6.86 Enable / disable hardware interrupts 125

13.6.87 Enable . 126

13.6.88 Disable . 126

13.6.89 Transfer buffer access . 126

13.6.90 tb size . 126

13.6.91 tb address . 127

13.6.92 ”Near pointer” handling . 127

13.6.93 dpmi enable nearptr . 127

13.6.94 dpmi disable nearptr . 128

13.6.95 dpmi nearptr enabled . 128

13.6.96 dpmi nearptr address mapping 128

13.7 Appendix A : index . 129

13.8 Appendix B : Error codes . 129

13.9 Appendix C : Go32 and DPMI comparison 130

13.10Appendix D : Go32 and DPMI comparison 132

13.11Appendix E : ”Time saver” procedures and their equivalent DPMI
and GO32 function calls . 134

9

CONTENTS CONTENTS

About this guide

This document describes all constants, types, variables, functions and procedures
as they are declared in the XTDFPC units

Throughout this document, we will refer to functions, types and variables with
typewriter font. Functions and procedures gave their own subsections, and for
each function or procedure we have the following topics:

Declaration The exact declaration of the function.

Description What does the procedure exactly do ?

Errors What errors can occur.

See Also Cross references to other related functions/commands.

The cross-references come in two flavors:

• References to other functions in this manual. In the printed copy, a number
will appear after this reference. It refers to the page where this function is
explained. In the on-line help pages, this is a hyperlink, on which you can
click to jump to the declaration.

• References to Unix manual pages. (For Linux related things only) they are
printed in typewriter font, and the number after it is the Unix manual
section.

The chapters are ordered alphabetically. The functions and procedures in most
cases also, but don’t count on it. Use the table of contents for quick lookup.

Credits

A genuine thanks goes to the following people:

• Michael Van Cannëyt for the original FPC docs styles and layout, which I
cowardly use.

• Peter Vreman for some help with the documentation and helping out with
other XTDFPCrelated questions.

• Thomas Schatzl for allowing to distribute his units in XTDFPC

10

Chapter 1

XtdFPC package/ The
Toolkit

This chapter contains all general information about XtdFPC, the other chapters
are dedicated to a specific unit.

1.1 Installation

1.1.1 Requirements

• All requirements of FPC for the platform/OS you use.

• A recent version. It’s still impossible to keep an archive with lowlevel stuff
like this up to date with all versions. Preferably a recent devellopers snapshot,
but mosttimes the last release also works, or only with minor adjustments.

• To run the assembler: An i386 system. Preferably Linux, Go32V2 or Win32.

1.1.2 platforms

The platforms supported are (with a recent snapshot)

• Go32V2, the main target.

• Linux, the other target, but generally the compiler has more problems on this
OS, so sometimes the newest quirks haven’t been solved on Linux.

• Win32, experimental, because Win32 doesn’t fully support all Turbo units.
Most units will work, some not, or will require minor adjustments.

• Win32/Delphi, I want to try to get SOME units Delphi compatible somewhere
in the future.

• others untested.

• Borland Pascal used to be a target, but I abandoned it. A lot of the routines
should still work with it.

11

XtdFPC package/ The Toolkit 1.2. INTERNALS

1.1.3 FPCversions

It’s hard to keep a source-archive compatible with every version and target, because
the FPC compiler (and RTL) still change slowly but steadily.

As said before, I try to keep the units compatible with the last release and the last
snapshot. If that isn’t possible, I choose for compability with the last snapshot, and
mainly the Linux and Go32V2 targets.

I don’t say that it won’t run on the other versions and targets, or that I don’t
support those other targets. However, I can’t test on those targets myself, or it
takes up too much time and everything for those targets is heresay, and untested.

The Borland Pascal 7.0 compability has been dropped, but single units might still
be Borland compilable with a reasonable effort. Turn assembler off! (syseq should
do that automagically).

Also often you have to turn of assembler for older snapshots, because the assembler
reader is one of the things that changes most (at least until 0.99.10).

1.2 Internals

1.2.1 Conditionals

i386 Intelstyle processor(also AMD, Cyrix and NextGen), required for using the
assembler. If you don’t $DEFINE this, the libraries will revert to the pascal-
alternatives

Linux This conditional is normally defined by the compiler, so there is no need to
define it yourself except when crosscompiling.

Turbo Syseq.inc tests VER60 and VER70 defines (which are automatically set by
BP/TP), and if one such define is found, syseq.inc $DEFINEs Turbo, so you’ll
know that this is Borland or Turbo Pascal specific code. Mainly used to avoid
importing Go32 under TP, and to turn off assembler (Since it’s 32bit it won’t
work under TP/BP)

CloseFind Indicates if Dos.FindClose is used after each Dos.FindFirst. Will be
always true in the future, except under Turbopascal. It’s true under Go32V2
because the Win9x LFN system also requires FindFirsts to be closed) (You
can undefine it for DOS, if you have compiled your RTL without LFN support,
the so called RTL-Lite), or if you only use plain DOS.

UseAsm This define is local to the unit it’s in. If you undefine it, no assembler
will be used in that unit, even if i386 is defined.

OldLinuxWin Used to select between two type of Crts. TRUE for version 0.99.8
and older, false for 0.99.9 and newer The new Linux Crt has a pointer to the
virtual screen and the screen-dimensions in the definition, for older versions
you have to alter the Crt before EWindow works under Linux. If your 0.99.9
doesn’t work, you’ll have to upgrade to a newer snapshot or edit syseq.inc

1.2.2 Procedure and unit names

The names of the procedures aren’t fixed yet. For now, I have stuck to the names in
the Modula2-version of XtdFPC. If somebody has a coherent namesystem, with
solid arguments in favour of the new system, I’m principally willing to change the

12

XtdFPC package/ The Toolkit 1.3. COPYRIGHT AND LICENSE DATA

procedure names. Often, procedurenames are based on SWAG, and already a bit
standard.

This will have to happen fast. At the time of this (0.10) release, XtdFPC is
downloaded almost daily, and I don’t want to change all procedure names after a
lot of people based their programs on the current names.

1.3 Copyright and license data

This is the file COPYING.TXT blended into the documentation, it applies to the
XTDLIB/FPC toolkit and its documentation: source files copyrighted by Marco
van de Voort.

The source code of XtdFPC is distributed under the GNU General Public License
(see next subsection) with the following exceptions:

Object files and libraries linked into an application may be distributed without
source code, as long as the application is not commercial. Commercial use requires
a fee. Mail Marcov@stack.nl for more details.

If you didn’t receive a copy of the file COPYING, contact:

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
USA

Suggestions, ideas ?? Please correct spelling mistakes in the license, if you see one.

1.3.1 The GNU General Public Licence

The following is the text of the GNU General Public Licence, under the terms of
which this software is distrubuted.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software—to make sure the software is free
for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using
it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute

13

XtdFPC package/ The Toolkit 1.3. COPYRIGHT AND LICENSE DATA

copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone’s free use or not licensed
at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and conditions for copying, distribution and modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such pro-
gram or work, and a “work based on the Program” means either the Program
or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

14

XtdFPC package/ The Toolkit 1.3. COPYRIGHT AND LICENSE DATA

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof, to
be licensed as a whole at no charge to all third parties under the terms
of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange;
or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for

15

XtdFPC package/ The Toolkit 1.3. COPYRIGHT AND LICENSE DATA

noncommercial distribution and only if you received the program in ob-
ject code or executable form with such an offer, in accord with Subsection
b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means
all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Pro-
gram or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or
modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a
consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.

16

XtdFPC package/ The Toolkit 1.3. COPYRIGHT AND LICENSE DATA

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and “any later version”,
you have the option of following the terms and conditions either of that version
or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. Because the Program is licensed free of charge, there is no warranty
for the Program, to the extent permitted by applicable law. ex-
cept when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any
kind, either expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the
Program is with you. Should the Program prove defective, you
assume the cost of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to in writ-
ing will any copyright holder, or any other party who may modify
and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or con-
sequential damages arising out of the use or inability to use the

17

XtdFPC package/ The Toolkit 1.3. COPYRIGHT AND LICENSE DATA

program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a
failure of the Program to operate with any other programs), even
if such holder or other party has been advised of the possibility of
such damages.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the
full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than ‘show w’ and ‘show c’; they could even be mouse-clicks
or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample;
alter the names:

18

XtdFPC package/ The Toolkit 1.4. THESE DOCS

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this
License.

1.4 These docs

These docs are written in , with a slightly enhanced fpc.sty (which is the FPC-
compilers style file).

Currently the quality is about the same as the handcoded HTML docs. The lay out
is a bit better, however the handmade docs have been testread and corrected. The
converted own documentation looks better than Tom’s, but that is because I did
Tom’s docs with a script, and mine by hand. My documentation was also created
to mimic the Free Pascal scheme, so it was easier to convert (the huge bunch of
underscores in Tom’s DPMI unit was pure horror)

Also I’m still playing with the tables of the dpmi unit.

The main reason for documentation is however the better structure, which makes
it easier to enhance the documents, and even a crossreference with the units of the
FPC Unitsreference is possible.

Some of the advantages:

• Because almost all procedure, function, constant, type and variable reference
sections are implemented as so called environment-macros, a small update to
the definition of such base environment causes all referencesections build on
such environment to be also updated.

So if I wish to say put the declaration part of each procedure subsection in a
different, smaller font, I simply add

\small

to the declaration of the procedureenvironment, and all procedure sections
will change.

• Currently, the documentation is released as PDF. However the (distributes)
sources compile and generate a nice DVI (or PS) if you prefer that. I tried to
generate HTML, but it is all too sensitive. Maybe at some later point when
I now better.

19

Chapter 2

ECRC32 unit

2.1 general notes

ECRC32, fast, easy to use CRC-32 checksum routines

A very small and simple unit which provides fast CRC-32 routines, probably faster
than most 16-bit routines, because using 32-bits assembler/variables eases program-
ming a unit like this considerably.

At the moment of writing, the Pascal version of CalcCrc wasn’t operational, because
of a problem in the open-array handling. Please check the header of the unit for
more information.

This unit has only one example demonstrating most procedures, InvertCRC (21)

2.2 Types and Constants

2.2.1 Poly32

Declaration: CONST Poly32 : CARDINAL = $0EDB88320;

Description: Poly32 is a 32bits seedvalue for the CreateCRC32Table (20) procedure.

This is the standard polynome, used by 99.9% of the programmers. The CRC’s you
see when you list archives (pkunzip v or arj l), or in WinZip, are all created with
this polynomal. If you stick to the procedure used in the example for this unit, you
will get the same crcvalue as e.g. ARJ for a certain file.

The only reason not to use this standard polynomal is for antihacking purposes.

See also: CreateCRC32Table (20)

2.3 procedures and functions

2.3.1 CreateCRC32Table

Declaration: PROCEDURE CreateCRC32Table(Poly32 : CARDINAL);

Description: This procedure must be called prior to any use of the CRCcalculating routines.

The procedure generates an internal, 256 elements big table of 32bits CRCcodes
on the heap which is needed for fast byte/characterbased CRC calculations. The

20

ECRC32 unit 2.3. PROCEDURES AND FUNCTIONS

parameter is a certain 32bits seed (corresponding with a polynomal I believe) which
is used to create the table.

If you want your CRC’s to be compatible with other programs (like ARJ,ZIP and
dozens of others), you should use Poly32 (20) as parameter

The generation of the table is very fast, and only has to be done once. (but more
calls to CreateCRC32Table are allowed).

See also: Poly32 (20)

2.3.2 CalcCRC

Declaration: FUNCTION CalcCRC (crc: CARDINAL;Buffer;BufSize:CARDINAL) : CARDINAL;

Description: Calculates a CRC32 checksum value over the first BufSize bytes in Buffer.

The function returns the calculated CRC value. The crc parameter, is equal to
$FFFFFFF if you use the procedure for the first time, or equal to the value returned
by a previous call to CalcCRC. See the example for more details.

For performance reasons CalcCRC doesn’t call AddCRC, the AddCRC code is in-
cluded in CalcCRC

See also: AddCRC (21) InvertCRC (21)

2.3.3 AddCRC

Declaration: PROCEDURE AddCRC(VAR crc : CARDINAL;ch : BYTE);

Description: Calculates a CRC32 over one byte, updates value CRC (from previous AddCRC
or CalcCRC calls, or $0FFFFFFFF if this is the first byte) to a new CRC value
Not really meant to be called in a loop, use CalcCRC (21) to calculate a CRC over
a big memory chunk.

Some structures add 4 zerobytes to the end of the to be crc’ed data. AddCrc is
meant to calculate a CRC over those 4 zero bytes if you can’t simply store 4 extra
zero’s after the data

See also: CalcCRC (21)

2.3.4 InvertCRC

Declaration: FUNCTION InvertCRC(crc : CARDINAL):CARDINAL;

Description: XOR’s a crcvalue with 1. If you calculate a crc using CalcCRC, you should use
this procedure on the value to obtain a standard CRC.

See also: none.

2.3.5 example

This is an example how to calculate a CRC over a file on disk. You can pack the
same file with ARJ or ZIP, and use Winzip, pkunzip -v or ARJ l to view the CRC-
value calculated by the compressor, and compare it to the one generated by this
example.

21

ECRC32 unit 2.3. PROCEDURES AND FUNCTIONS

PROGRAMCRCTEST; {Tested }

USES ECrc32 , EFIO; { EFIO is only used to d i s p l a y a value in HEX form}

CONST FileName=’test.dat’ ; {Make sure the f i l e e x i s t s , and s i z e>0}

VAR F : File ;
Buf fer : ARRAY[0 . . 2047] OF BYTE; { 2kb b u f f e r , but CalcCRC

can process a Gigabyte b u f f e r }
BytesRead : WORD;
Crc : CARDINAL;

BEGIN
CreateCRC32Table (Poly32) ; { Generate the CRC t a b l e }
Assign (F, Filename) ;
Reset (F, 1) ;
CRC:=$0FFFFFFFF; { Standard s t a r t−value }
REPEAT

BlockRead (F, Buf fer , 2048 , BytesRead) ; { Read a chunk }
Crc := CalcCrc (CRC, Buffer , BytesRead) ; { c a l c u l a t e a CRC over the chunk }

UNTIL BytesRead<>2048 ; { Unti l end−of−f i l e }
Close (F) ;
WrLngHex(InvertCRC (CRC)) ; { Inver t CRC and d i s p l a y }
Writeln ;

END.

22

Chapter 3

EDate Unit

EDate, fast and advanced date handling

EDate is a Date unit in plain 32bit AT&T assembler, and should be fast enough for
most applications. The originals were used to process dates in logcompression and
loganalysers, which is the reason the procedure were written in assembler (386SX-
20!). Of course there are Pascal equivalents.

All date procedures have been checked for problems around 2000. Some old routines
didn’t consider the year 2000 to be a leapyear. Fixed.

3.1 Types and constants

3.1.1 Months and Dows

Declaration: TYPE MonthStr = ARRAY[1..12] OF String[3];
DowsStr = ARRAY[0..6] OF String[3];

CONST
Months:MonthStr=(’Jan’,’Feb’,’Mar’,’Apr’,’May’,’Jun’,’Jul’,

’Aug’,’Sep’,’Oct’,’Nov’,’Dec’);

Description: The constants used are the days of the week, and the abbreviations of the months.
You can change these if you wish, but keep them exactly 3 characters long, since
these constants are used by DatiToStr (25). (Or fix DatiToStr too)

SeeAlso DatiToStr (25)

3.1.2 Ceremony

Declaration: TYPE Ceremony = (AshWednesday,GoodFriday,EasterSunday,
EasterMonday,AscensionDay,Whitsunday,
WhitsunMonday,CorpusChristiDay,RepentanceDay,
FirstAdvent,SecondAdvent,MothersDay);

Description: This type is used by MovableCeremony (26), and contains all the holidays that
MovableCeremony can return a date for.

SeeAlso MovableCeremony (26)

23

EDate Unit 3.2. PROCEDURES AND FUNCTIONS

3.2 Procedures and functions

3.2.1 LeapYr

Declaration: FUNCTION LeapYr(Year : WORD) : BOOLEAN;

Description: Returns TRUE when the Year is a leapyear. FALSE otherwise.
A leapyear is defined as (Year and 3=0) AND ((Year DIV 100)<>0 OR (Year DIV
400)=0) which will be correct until the year 4000 or so.

See also: Used by most other procedures.

3.2.2 DayNr

Declaration: FUNCTION DayNr(Day,Month,Year : WORD) : WORD;

Description: Calculates daynumber, January 1st =1. Februari 1st=32, tests for leapyears.
(With LeapYr (24)) Easy way to subtract days within a year, or (DayNr(31,12,Year-
1) is the number of days in last year. Use DayNrBack (24) to convert a day number
back to a real date

Note: Remember, a DayNr is NOT corresponding to a date. A year and a DayNr
does though.

See also: LeapYr (24)

3.2.3 DayNrBack

Declaration: PROCEDURE DayNrBack(Year,DayNr:WORD; VAR Month,Day : WORD);

Description: Converts a daynumber(e.g. created with DayNr (24)) back to day and month
format.

Note: Expires Feb 28th, 2100

See also: DayNr (24)

3.2.4 DOW

Declaration: FUNCTION DOW(Year,Month,Day:WORD): WORD;

Description: Day of week (Sunday,Monday etc) for a given date. DOW(a Sunday)=0; DOW(
a Monday)=1 etc.

Note: Expires Feb 28th, 2100

See also: WeekNr (25), Easter (25)

3.2.5 ToUnix

Declaration: FUNCTION ToUnix(Year, Month, Day, Hrs, Mins, Secs : WORD):CARDINAL;

Description: Calculates unixdate, which is defined as the number of seconds after 1-1-70.

Notes:
Expires Feb 28th, 2100
This value is big endian, while some platforms use little endian unix dates. So if you
want to compare your calculated unix date with a date retrieved from a filesystem,
make sure that the dates are both in the same ’endian’ format.

24

EDate Unit 3.2. PROCEDURES AND FUNCTIONS

See also: DayNr (24) and (via DayNr) LeapYr (24) FromUnix (25)

3.2.6 FromUnix

Declaration: PROCEDURE FromUnix(Unix : LONGINT;VAR Year,Month,Day,Hour,Min,Sec:WORD);

Description: Retrieves DDMMYY HH:MM:SS back the from unixdate, which is defined as the
number of seconds after 1170.

Notes:
Expires Feb 28th, 2100
All values are big endian, while some platforms use little endian unix dates. So
if you want to compare your calculated unix date with a date retrieved from a
filesystem, make sure that the dates are both in the same ’endian’ format.

See also: ToUnix (24) LeapYr (24)

3.2.7 WeekNr

Declaration: FUNCTION WeekNr(Year,Mnth,Day:WORD):WORD;

Description: Returns weeknumber (in year) for a certain date. Remember this isn’t simply
DayNr (24) DIV 7. Jan 1st is not necessarily the first day of week 1.

Note: Expires Feb 28th, 2100, because DOW does.

See also: DOW (24) DayNr (24)

3.2.8 Easter

Declaration: FUNCTION Easter (Year : WORD) : WORD;

Description: Returns the date of Easter for a given year. 1=March 1st. 32= April 1st etc.

Note: Expires Feb 28th, 2100, because DOW does.

See also: DOW (24)

3.2.9 DatiToStr

Declaration: PROCEDURE DatiToStr(Hour,Min,Sec,Day,Month,Year:WORD; CONST Format:String;
VAR DateStr : String);

Description: DatiToStr is a complex configurable date-formatting routine, and the biggest
EDate procedure by far.

Basically it copies Format to DateStr, while replacing some switches. Padding
character is default (when the procedure starts) 0, but can be changed to space

Format-string to see all options, use this string twice (once prefixed with %i to
see padding) to see all options: ’%H:%M:%S %h:%m:%s %U:%m %a %u:%m %A
%D-%O-%Y %d-%o-%y, %W %J %D%L, %y’;

Note: Make sure DateStr is big enough
If you don’t have day switches in your Format-string, you can specify anything for
day.

See also: DOW (24)

25

EDate Unit 3.2. PROCEDURES AND FUNCTIONS

Table 3.1: DatiToStr options

Replaces with padding with padchar?
%H Hour no
%M Min no
%S Sec no
%D Day no
%O Month no
%Y Year MOD 100 Yes
%h Hour Yes
%m Min Yes
%s Sec Yes
%d Day Yes
%o Month Yes
%Y Day Yes
%y Year (all 4 characters) no
%J or %j 3 character month (Jan,Feb) n/a
%W or %w 3 character day of week (Sun,Mon) n/a
%L suffix of day (st,nd,rd,th) n/a
%i padding character to space No output,internal
%I padding character to zero No output,internal
%U Hour MOD 13 (1..12) No
%u Hour MOD 13 (1..12) Yes
%A AM or PM n/a
%a am or pm n/a

3.2.10 MovableCeremony

Declaration: PROCEDURE MovableCeremony (MovableCeremon : Ceremony (23); Year: WORD;
VAR Day, Month : WORD);

Description: Returns day and month of a certain movable ceremony in a certain Year

Note: Expirency date not known, but based on DayNr and LeapYr, so it can prob-
ably be used in the 21st century.

See also: DOW (24), DayNr (24), DayNrBack (24)

Uses EDate ;

VAR Day, Month : LONGINT;

BEGIN
MovableCeremony (AscensionDay , 1998 , Day, Month) ;
Writeln (’AscensionDay : ’ , Day, ’−’ , Month , ’−1998’) ;

END.

26

Chapter 4

The EDirTree unit.

4.1 Introduction

This is the documentation for EDirtree unit which is one of the three units for
recursive directory scanning right now:

• This unit, EDirTree is the oldest one, and also the most used one.

• ODirTree implements the same functionality as EDirTree, and even a bit
more in an OOP modelled way.

• chapter ?? is basically the same unit as EDirTree, only it uses Linux globbing
and FStat to get its data. Also all structures use the stat record instead of
SearchRec

This is both the manual for EDirTree and EDirGlob, which are on an interface level
nearly the same, except that in all EDirGlob’s procedure and types SearchRec is
replaced by Linux.stat.

The main target is FPC (Linux and Go32V2 tested). How I search directories on
the Win32 platform I don’t know. I would like to implement that in a more or less
Delphi compatible fashion. Anyone?

4.1.1 Objectives while implementing the unit

When I was developing this unit, I kept some things in mind:¡p¿

• One basic unit for all scanning for files and directories, meant for when one
FindFirst/FindNext loop wouldn’t do the job anymore.

• A simple interface which eased extending existing simple programs with di-
rectory recursion.

• Using a the same unit over and over again, no template unit which you have to
adapt to your fresh application everytime you use it. In general, this meant
using procedure-variables or OOP, to allow application depend code to be
used internally in the unit.

27

The EDirTree unit. 4.1. INTRODUCTION

• The tree-building in memory routines that can be used for everything. I
didn’t implement this yet, but it bears down to an untyped pointer for ev-
ery file/directory so you can add your own information to the tree. I did
implement this in ODirTree.

The things I wanted to do with this unit are also simple:

• I wanted to make a kind of automatic indexer for my home-made archive-CDs.
The program should read 4DOS-DESCRIPT.ION’s, and generated files.bbses
and a main-index. I wanted to implement a 00-index.txt and 00index.html
system on top of that, but the longfilesupport became more important, and I
never extended the program.

• The other reason was to have a custom scanning module. I use a modified
version of FileFind to scan for ARJ and other archive types on the harddisk.
This procedure however looks IN the files for detection, the extension doesn’t
matter (findarch.pp)

EDirTree now uses forward slashes (if Linux exists) and FindClose (almost always
necessary).

4.1.2 procedure groups

EDirTree has two separate groups of procedures, each corresponding with a different
kind of directory scan:

• FileScan (31) is the most used procedure. FileScan implements recursive scan-
ning of a certain directory and below, and a procedure supplied by is run
for each file which matches a certain pattern (like *.pp). Depending on the
boolean seevarDirsToo matching directorynames will also be reported to this
procedure.

• The second set of procedures creates and operates on a directory tree read
into memory

– BuildTree (32) creates the binary tree and scans the specified path and
adds all its directories (recursive) to a branching tree in memory.

– SearchForFiles (32) scans the path again and adds all matching files to
the tree. SearchForFiles can be run multiple times for different patterns

– ScanTree (32) scans the tree (in memory) and executes a procedure (one
of yours) for each file which matches the wildcard. ScanTree can also
run a procedure on each directory if DirsToo (30) is TRUE

– Finally KillFileTree (33) removes a tree built by the previous procedures
from memory.

Two other procedures exist and are used by both sets procedures.

• SetFAttr (30) Sets fileattributes used by the Dos.FindFirst and Dos.FindNext
procedures in the above procedures. The directory bit is not important

• ClearStat (31) is the initialisation code of the unit. It resets all important
parameters to their default values (DirsToo (30), file attributes, and all the
statistics in the variables section

28

The EDirTree unit. 4.2. TYPES AND CONSTANTS

4.2 Types and constants

4.2.1 procedure types

Declaration: ReportProc = PROCEDURE (Path:PathStr;Search:SearchRec);
FileProc = PROCEDURE (P:PathStr;Search:SearchRec);
DirProc = PROCEDURE (P:PathStr);
DetectProc = FUNCTION (Search:SearchRec;P:PathStr):BOOLEAN;

Description: These proceduretypes accept one or two parameters.

•The PathStr typed parameter is always the path of the file the procedure has
to process WITHOUT the filename itself.

•The SearchRec parameter (the record used by FindFirst,FindNext, see Dos
unit for declaration) describes the found file (Search.Name is it’s name, Search.Size
it’s size in bytes and so on).

The DirProc has only one parameter since it operates on a directory. The Detect-
Proc type is a function, and the return value indicates if the file should be added
to the tree (TRUE) or not (FALSE).

See also: FileScan (31), BuildTree (32), SearchForFiles (32), ScanTree (32)

4.2.2 FilAttr

Declaration: FilAttr = BYTE;

Description: This type is meant to type the attributes for FindFirst and FindNext. A remnant
of the units Modula-2 origin where it is a SET type.

See also: SetFAttr (30)

4.2.3 TreeBuildingTypes

Declaration: Fileptr = F̂ilesRec; FilesRec = RECORD Next : FilePtr; next file in this
directory DirE : SearchRec; Unit DOS, record for findfirst END;

DirTreePoint = D̂irTreeRecord; DirTreeRecord = RECORD NextDir, next directory
on this level SubDirs : DirTreePoint; subdirectories (Lower than this
level) Name : PathStr; Name of directory Files : FilePtr; see above
END;

Description: These structures are used to build a tree (See BuildTree (32)) in memory.

(Here is an image missing)

Horizontally, all directories are on the same level, horizontal lines indicate the
NextDir pointer of DirTreeRecord, vertical lines equal the SubDirs pointer of DirTreeRe-
cord. Directory DOS has no subdirectories, directory Windows two (System AND
INF). Directory C: is the top level, and has two directories. All non-used pointers
are nil.

Files aren’t included in this picture. Imagine every directory having a single linked
list of files in the direction perpendicular to the screen.

See also: BuildTree (32), SearchForFiles (32), ScanTree (32)

29

The EDirTree unit. 4.3. VARIABLES

4.3 Variables

4.3.1 DirsToo

Declaration: DirsToo : BOOLEAN

Description: If this boolean variable is true, then also directorynames which match the search-
pattern of FileScan (31) or ScanTree (32) are reported to the Report procedure-
variable.

See also: FileScan (31) or ScanTree (32)

4.3.2 Statisticsvariables

Declaration: FoundCount : LONGINT; Number of files found TotalBytes : LONGINT; Total
bytes in files found. See also ClusterSize (30) FoundDirs : LONGINT; Directories
found (. and .. are ignored)

Description: These variables contain some statistics about the last search, or last series of
searches. The statistics are cleared by ClearStat (31)

See also: ClearStat (31), ScanTree (32), FileScan (31)

4.3.3 ClusterSize

Declaration: ClusterSize : LONGINT

Description: This variable can be used to control rounding of filesizes before the Statisticsvari-
ables (30) are updated. If ClusterSize is zero, no rounding is done.

The idea is to be able to find a better estimate for the size of a selection files than
simply adding up the filesizes, by taking clustersize (inode blocksize) into account.
This estimate is better but not perfect (directory entries also take up space), but
this is normally relatively small. Also it’s quite simple to implement, since all
filesystems have such a value.

Under Linux it’s even more difficult, since directories can be complete mounted
filesystems with a different inode size.

4.4 Procedures and Functions

4.4.1 SetFAttr

Declaration: PROCEDURE SetFAttr (Attr:FilAttr);

Description: Sets attributes used for all FindFirstFindNext couples in EDirTree. Directory
attribute is added or cleared when necessary(if the program searches for directories
or just for files).

Errors: None.

See also: FilAttr (29), FileScan (31), BuildTree (32), SearchForFiles (32)

30

The EDirTree unit. 4.4. PROCEDURES AND FUNCTIONS

Uses EDirTree ;

BEGIN
ClearStat ; // Resets unit .
SetFAttr (arch ive +readonly) ; // inc lude arch ive and readonly f i l e s in next search .

END.

4.4.2 ClearStat

Declaration: PROCEDURE ClearStat;

Description: This is the initialiation code of the unit. It resets all the Statisticsvariables (30)
to zero, DirsToo (30) to false and calls SetFAttr (30) to let the unit include all files
except volume-IDs.

The initcode is moved to a procedure so mainprograms can reset the unit, and
because TopSpeed modula-2 doesn’t allow overlayed units to have initcode.

Errors: None.

See also: Statisticsvariables (30), DirsToo (30) and SetFAttr (30)

See SetFAttr (30) for an example.

4.4.3 FileScan

Declaration: PROCEDURE FileScan(RootDir,FileName : PChar;Report: ReportProc (29));

Description: Filesearch in path RootDir and in its subdirectories, for files matching FileName
(may be a wildcard, directories are regarded as files when DirsToo (30)=TRUE).
Files are reported to the procedure Report, with all information (path and Dos.SearchRec).

To quickly execute a procedure in every directory, enter ”.” as filename, and assign
TRUE to DirsToo (30)

FileScan is quite powerfull, however if you want to do a very complex scan, or scan
a certain drive or directory several (more than 2) times, look at the treebuilding
procedures (ScanTree (32) SearchForFiles (32) and BuildTree (32))

Errors: None.

See also: ScanTree (32) SearchForFiles (32) , BuildTree (32) , ReportProc (29)

Uses EDirTree

PROCEDURE WriteOutput (Path : PathStr ; FileData : SearchRec) ;

BEGIN
Write(Path , FileData . name , ’ ’ , Fi leData . s i z e) ;

END;

BEGIN
DirsToo :=FALSE; {EDirtree procedure , don ’ t report

d i r e c t o r i e s , incase a d i r e c t o r y with
ex tens ion . pas e x i s t s }

FileScan (’c:\’ , ’∗.pas’ , @WriteOutput) ; { searches for ∗ . pas on e n t i r e ’ c :\ ’}
END.

31

The EDirTree unit. 4.4. PROCEDURES AND FUNCTIONS

4.4.4 BuildTree

Declaration: FUNCTION BuildTree(CONST RootDir: PChar): DirTreePoint (29);

Description: Searches path RootDir and adds all directories to a DirTreePoint (29) typed tree.
A pointer to the created tree is returned.

Errors: None.

See also: ScanTree (32) SearchForFiles (32) , TreeBuildingTypes (29) KillFileTree (33)

The buildtree procedures don’t have an example in the helpfile. See DirTest.pp in
the XtdFPC package.

4.4.5 SearchForFiles

Declaration: PROCEDURE SearchForFiles(Root: DirTreePoint (29);CONST Pattern:PChar;Select:
DetectProc (29));

Description: This procedure is used after BuildTree (32) (which creates the Root DirTreePointer
(29)), and searches in all directories (found by BuildTree (32)) for an occurance of
Pattern, and adds those files to the tree under the ”files” field of all DirTreePoints
(29).
Pattern is something like ”*.txt”

Select is a function which you can supply to do additional checks. If this function
returns TRUE the file will be added to the tree, if it returns FALSE it won’t. If
you don’t want to use this feature, pass a procedure which always returns TRUE.

Can be used several times, for more than one extension/pattern, however over-
lapping patterns will result in duplicate files. (*.pp and helloworld.* will cause
helloworld.pp to be added twice)

Errors: None.

See also: ScanTree (32) BuildTree (32) , TreeBuildingTypes (29) procedure types (29) Kill-
FileTree (33)

The buildtree set of procedures don’t have an example in the helpfile. See DirTest.pp
in the XtdFPC package.

4.4.6 ScanTree

Declaration: PROCEDURE ScanTree(Root : DirTreePoint (29);DoFile: FileProc (29);
DoDir: DirProc (29));

Description: Use this procedure after a BuildTree (32) and optionally one or more SearchForFiles
(32).

This procedure scans the directory tree Root and runs DoFile for each found file
in the tree. DoDir is also run for every directory when DirsToo (30)=TRUE.

Errors: None.

See also: BuildTree (32), TreeBuildingTypes (29), procedure types (29), DirsToo (30), Kill-
FileTree (33), SearchForFiles (32)

The buildtree set of procedures don’t have an example in the helpfile. See DirTest.pp
in the XtdFPC package.

32

The EDirTree unit. 4.4. PROCEDURES AND FUNCTIONS

4.4.7 KillFileTree

Declaration: PROCEDURE KillFileTree(VAR Root: DirTreePoint (29));

Description: Use after a BuildTree (32) and (optionally) one or more SearchForFiles (32) calls.
This procedure simply removes a entire files-and-directory tree referenced by Root
from memory. The procedure can also be used to eliminate unwanted parts of the
tree.

Errors: None.

See also: ScanTree (32) BuildTree (32) , TreeBuildingTypes (29) procedure types (29) DirsToo
(30)

The buildtree set of procedures don’t have an example in the helpfile. See DirTest.pp
in the XtdFPC package.

33

Chapter 5

EDos

EDOS, Dos functions not in unit DOS

EDos implements some simple functions typically used under Dos, like volumelabels,
serial numbers, and drivetypedetections

This unit isn’t portable at all (more portable stuf is moved to chapter 6

I removed all examples while TEX’ing the old examples, because I didn’t like them.
Almost all examples were incomplete, or too simple. I suggest you look at sysinfo
or dfree for better fully working examples.

5.1 Types and variables

5.1.1 CMOSRec

Declaration: TYPE CMOSRec= PACKED RECORD
Sec, Hr:Min:Sec current time. May deviate from time reported by

Windows or TIME command. Only synchronized on startup.
AlSec, AlHr:AlMin:AlSec time of next alarm interrupt. Mosttimes nonsense data.
Min,
AlMin,
Hr,
AlHr,
DayOfWeek, Day of week. Monday=1.
Day, Day/Month/Year (only 2 digits of year, other two are in century)
Month,
Year,
RTCA, Control registers of the Real Time Clock (RTC)
RTCB,
RTCC,
RTCD,
POSTStatus, Diagnostic status byte
ShutDownStatus, Shutdown status byte
DiskType, Floppy type (lo(x)=A: Hi(X)=B:)
Res1,
HDType, Hardddisk type (Lo(x)=HD1 Hi(X)=HD2) XT-only
Res2,

Equipment : BYTE; See sysinfo demo

34

EDos 5.1. TYPES AND VARIABLES

BaseMem, Basemem in kb
XTDMem : WORD; Extended memory in kb (see alternate below)
HD_C, modern harddisktypes (If Lo(CMOS.HDType)=15)
HD_D : BYTE; modern harddisktypes (If Hi(CMOS.HDType)=15)
Res3 : ARRAY[0..18] OF BYTE;
Checksum, (Sum of bytes 16 to 45) AND 65535
XTDMem2 : WORD; Extended memory in kb (see alternate above)
Century, First 2 digits of year
Misc : BYTE; Bit 7 set = top 128k installed,

bit 6 set = first user message?
Res4 : ARRAY[0..11] OF BYTE;
Res5 : ARRAY[0..63] OF BYTE;
END;

Description: This record is filled by GetCMOS (41) and contains the contents of the CMOS
(the area where the BIOS keeps its data like harddisk time, amount of memory and
the correct time.

Please beware that the contents of the first 10 fields (Sec..Year) and the century can
be different from the actual BIOS content. This because GetCMOS (41) converts
BCD to binary values.

Some information of the bit-level flag fields is included below.

•RTCA

–Bit 7 = Update in progress
∗0 = date & time can be read
∗1 = time update busy

–Bit 6-4 = Time frequency divider
∗010 = 32.768 KHz

–Bit 3-0 = Rate selection frequency
∗0110 = 1.024 KHz sq. wve. freq.

•RTCB

–Bit 7 = Clock update cycle
∗0 = Update normally
∗1 = Abort update in progress

–Bit 6 = Periodic interrupt
∗0 = disable (default), 1 = enable

–Bit 5 = Alarm interrupt
∗0 = disable (default), 1 = enable

–Bit 4 = Update-ended interrupt
∗0 = disable (default), 1 = enable

–Bit 3 = Status register A sq. wve. freq.
∗0 = disable (default), 1 = enable

–Bit 2 = Date format
∗0 = Calender in BCD format (default)
∗1 = Calender in binary format

–Bit 1 = 24-hour clock
∗0 = 24-hour, 1 = 12-hour

–Bit 0 = Daylight Savings Time
∗0 = disable (default), 1 = enable

35

EDos 5.1. TYPES AND VARIABLES

•RTCC

–Bit 7 = IRQF flag
–Bit 6 = PF Flag
–Bit 5 = AF Flag
–Bit 4 = UF Flag
–Other bits reserved

•RTCD

–Bit 7 = Valid CMOS RAM bit
∗0 = battery dead, 1 = battery OK

–Other bits reserved

•POST Diagnostic status

–Bit 7 = Real-time clock power status
∗0 = OK, 1 = not OK

–Bit 6 = CMOS checksum status
∗0 = good, 1 = bad

–Bit 5 = POST config. status
∗0 = valid, 1 = not valid

–Bit 4 = POST Memory size check
∗0 = OK, 1 = !OK

–Bit 3 = Fixd disk/adapter init.
∗0 = init OK, 1 = init bad

–Bit 2 = CMOS time status
∗0 = OK, 1 = !OK

–Other bits reserved

•Shutdown code

–00h = Power on or soft reset
–04h = POST end; boot system
–05h = JMP dword ptr with EOI
–06h = Prot. mode tests OK
–07h = Prot. mode tests FAILED
–08h = Memory size FAILED
–09h = int 15h block move
–0Ah = JMP dword ptr with EOI
–0Bh = Used by 80386

•Installed equipment

–Bits 7-6= Number of floppy drives
–Bits 5-4= Primary display
∗00= Adapter BIOS
∗01= CGA 40 cols
∗10= CGA 80 cols
∗11= MDA

–Bits 3-2= Reserved
–Bit 1 = Math copro. present
–Bit 0 = Floppy drive present

•POST information flag

36

EDos 5.1. TYPES AND VARIABLES

–Bit 7 = Top 128K base memory status
∗0 = not installed
∗1 = installed

–Bit 6 = Setup program flag
∗0 = Normal (default)
∗1 = Output user message

–Other bits reserved

See also: GetCMOS (41)

5.1.2 TSwapInfo

Declaration: TYPE PagerType = (Res0, Reserved
SW_NOPAGER, No paging system
SW_DOSPAGER, Paging through Dos
SW_IOSPAGER); Protected mode pager

TSwapInfo = RECORD GetSwapData record
FileName : String[255]; Location swapfile
FileSize : COMP; Size swapfile
Pager : PagerType; Pager type, see above
END;

Description: This record is filled by GetSwapData (40) and contains the location and size of
the swapfile, and the operating mode of the swapper (none,dos,protected)

See also: GetSwapData (40)

5.1.3 Drv

Declaration: Drv : LONGINT

Description: A lot of procedures in this unit have a parameter called Drv.
This parameter identifies a drive by a positive number (table (5.1))

See also: a lot.

5.1.4 UART

Declaration: TYPE UART = (uNoUART, uBadUART, u8250, u16450, u16550, u16550a);

Description: The UART type as returned by TestUART (42). The enumeration names speak
for themselves, except that NoUart can also be caused by the OS (e.g. Win95)
blocking the detection.

See also: TestUART (42)

5.1.5 SubstExpand

Declaration: VAR SubstExpand : BOOLEAN;

Description: If this boolean is TRUE, TrueName (39), GetShortPathName (40) and GetLong-
PathName (40) will expand substed driveletters to their original paths.

See also: TrueName (39), GetShortPathName (40), GetLongPathName (40)

37

EDos 5.2. PROCEDURE AND FUNCTIONS

Table 5.1: Drv parameter table

Number meaning
0 current (default) drive
1 drive a:
2 drive b: even if you don’t have a second floppy drive
3 drive c:
4 drive d:
5 drive e:
6 drive f:
7 drive g:
8 drive h:
etc, etc

5.2 Procedure and functions

5.2.1 GetSerial

Declaration: FUNCTION GetSerial(Drv (37) : LONGINT) : LONGINT;

Description: Returns the serialnumber as longint for drive Drv. (0=current, 1=A, 2=B etc)

Note: Only works for harddisks and floppies.

See also: Drv (37)

5.2.2 GetVolume

Declaration: FUNCTION GetVolume(Drv (37) : LONGINT) : String;

Description: Returns the volumename for drive Drv. (0=current, 1=A, 2=B etc)

Obtained with FindFirst (most compatible, other methods don’t work on CDROMs,
Zip drives and networks)

See also: Drv (37)

5.2.3 DriveType

Declaration: FUNCTION DriveType(Drv (37) : LONGINT) : LONGINT;

Description: Tries to identify the type of drive Drv. (0=current, 1=A, 2=B etc) table (5.2)

The procedure is quite efficient, and you can make your dosbased programs a lot
more safe with it (no more invalid drive problems etc, or trying to mount cdroms
without disks in it).

The procedure retrieves the number of floppy drives your system has (with NrFlop-
pies (39)), and if that is 1, it assumes drive b: doesn’t exist. This avoids renaming
A: to B: as most modern mainboards do

It also uses standard procedure DiskFree to check all drives. This way remov-
able drives (floppy,ZIP,Cdrom) without media loaded are non-existant, and NOT
mounted.

The best way to detect the existance of drives is demonstrated in demo DFree or
sysinfo.

38

EDos 5.2. PROCEDURE AND FUNCTIONS

Table 5.2: Returnvalues DriveType

ReturnValue Drive type
0 Drive physically isn’t available, or it’s removable, and no disk is loaded
1 Remote (network, Ramdrive) disk drive
2 Fixed (hard) disk drive
3 Removable (floppy) disk drive
4 Substed drive
5 Cdrom

Note : The only system this goes wrong is when your bios declares two floppies in
the biosdataarea, while you have only one.

See also: NrFloppies (39)

5.2.4 NrFloppies

Declaration: FUNCTION NrFloppies:LONGINT

Description: Retrieves the number of floppies from the BIOSdata area.

Some mainboards(most of them 486er) always return two even if only one diskdrive
exists!

See also: NrFixedDisks (39)

5.2.5 NrFixedDisks

Declaration: FUNCTION NrFixedDisks:LONGINT;

Description: Retrieves the number of fixed disks from the BIOSdata area.

See also: NrFloppies (39)

5.2.6 LastDrv

Declaration: FUNCTION LastDrv:LONGINT;

Description: Returns highest valid logical drive

See also: NrFloppies (39) NrFixedDisks (39)

5.2.7 TrueName

Declaration: PROCEDURE TrueName(VAR path : String);

Description: This procedure is similar to FExpand, but can also expands substituted drives to
their real path.(Depending on SubstExpand (37))

This procedure uses a (formally) undocumented dosfunction, and you’d better use
FExpand, unless you want to avoid substed drives for some reason, or distinguish
between HD’s,substed drives and cdroms.

Though undocumented, this dos function is used very often, and Dos 7.x contains
a LongFileName version of it. It’s generally considered to be secure.

39

EDos 5.2. PROCEDURE AND FUNCTIONS

See also: GetLongPathName (40)

5.2.8 GetLongPathName

Declaration: PROCEDURE GetLongPathName (Short: String; VAR Long: String);

Description: This procedure is basically a TrueName (39) which tries to return only long file
names. (expands 8.3 notation with tildes to lfn when possible)

Depending on SubstExpand (37) substed drives are also expanded

See also: TrueName (39), GenerateShortName (41), GetShortPathName (40)

5.2.9 GetShortPathName

Declaration: PROCEDURE GetShortPathName (Long: String; VAR Short: String);

Description: This procedure is basically a TrueName (39) which only returns 8.3 (tilde-notation)
filenames. This can be used to secure parameters which will be passed to non lfn-
utils.

Depending on SubstExpand (37) substed drives are also expanded.

See also: TrueName (39), GenerateShortName (41), GetLongPathName (40)

5.2.10 ClusterSize

Declaration: FUNCTION ClusterSize(Drv (37) : LONGINT) : LONGINT;

Description: Returns the clustersize (allocation size on harddisk). This is the smallest chunk
that can be allocated on disk. (so a 1 byte files occupies clustersize bytes)

This procedure also works for FAT32 (it has LFN support), and is also corrected
for CDROMs (Clustersize cdrom AFAIK always=2048)

See also: none.

5.2.11 NrDrives

Declaration: FUNCTION NrDrives:LONGINT;

Description: SHOULD return the number of logical drives, but Win95 always returns 32 AFAIK.

See also: NrFloppies (39)

5.2.12 GetSwapData

Declaration: PROCEDURE GetSwapData(VAR Swp : TSwapInfo (37));

Description: Tries to locate the swapfile, and it’s dimensions. If the call fails (No dos/win
paging installed) the record is filled with CHR(0)

See also: TSwapInfo (37)

40

EDos 5.2. PROCEDURE AND FUNCTIONS

5.2.13 WinVer

Declaration: Function WinVer:WORD;

Description: Returns the windows version in BCD format (minor=LO(WinVer), major=HI(WinVer))
For Win95 it returns $400 (=4.00)
This can also be used to distinguish between dos 7.x dosmode and Win95 GUI.

See also: None.

5.2.14 GenerateShortName

Declaration: PROCEDURE GenerateShortName(VAR Long: String; VAR Short: String);

Description: Just like GetShortPathName, this procedure changes a longfilename to a short
one. However GenerateShortName doesn’t generate a tilde notation, but tries to fit
as much characters as possible in the 8.3 space.
E.g. ”Very long name.txt” becomes ”verylong.txt” while GetShortPathName would
do it like this: ”verylo1̃.txt”
I don’t use this procedure. I created it when trying to find something like GetShort-
PathName, and included it here, because it’s ready.

See also: TrueName (39), GenerateShortName (41), GetShortPathName (40) GetLongPath-
Name (40)

5.2.15 GetCMOS

Declaration: PROCEDURE GetCMOS(VAR CMOS : CMOSRec (34));

Description: Copies the first 64 bytes of the CMOS to the above packed CMOSRec (34) record
Before copying, GetCMOS tests bit 2 of the RTCB register if the date-time values of
CMOS are coded as BCDs. If so, GetCMOS automatically performs a BCD2Binary
conversion.

See also: CMOSRec (34)

5.2.16 Installed

Declaration: FUNCTION Installed(Tsr:WORD):WORD;

Description: Calls the multiplexer interrupt $2F (=47d).

IF Tsr \var{<} 255 THEN
call \$2F with AH=Tsr, AL=0

ELSE
call \$2F with AX=Tsr BX=0;

The functionreturns values are shown in table (5.3)
Originally, multiplexvalues > 255 were errors(use (returnvalue AND 255)), however
a lot of modern TSRs (like Windows) use the multiplex to return a version number
in BCD format. Testing for values 0 and 1 is enough mosttimes, everything else is
installed.
Some constants to use as parameter for this procedure are included in the interface
section of EDos.

See also: None.

41

EDos 5.2. PROCEDURE AND FUNCTIONS

Table 5.3: Tsr Codes

Value meaning
255 Tsr is installed
0 Tsr is not installed
1 Tsr not installed and not ok to install

5.2.17 TestUART

Declaration: FUNCTION TestUART(Port : LONGINT): UART (37);

Description: Tests if an UART (processor behind the comport) exists on port ”Port”, IOW
does the comport corresponding with this address exist?. P.s. Windows sometimes
blocks some ports. I can’t detect COM1 under Windows. (The mouse is attached
to it)

If I try to detect PS/2 ports under Windows, my soundcard hiks. Probably some-
thing doesn’t decode the upper bits of the com-port adress :)

See also: Demo sysinfo

5.2.18 IsDevice

Declaration: FUNCTION IsDevice(CONST Fnamex: String): BOOLEAN;

Description: Returns TRUE if named file is actually a device. (Like CON,NUL, etc). Can be
used to detect a device as input/output on commandline, or to verify existance of
a certain devicedriver.

See also: None.

42

Chapter 6

The EFIO unit.

The EFIO unit is a kind of unit for miscellaneous routines that operate on files or
filenames. As you can see, the number of routines is quite low. I do not define
routines already existing in the RTL.

Also all directory scanning (routines that use FindFirst/FindNext) are located in
EDirTree.

6.1 Types and constants

There is actually only one type in EFIO. This type is the return value of ArchiveMethod
(43)

TYPE ArchiveType = (none,SQZ, ZIP, HPK, ZOO, LZH,
ARJ, DWC, ARC, PAK, A7P, HYP,
RAR, Q, UC2, Gif, LBM, PCX,
WAV, BMP, MP3);

About MP3 Please note that at the time of writing the MP3 file detection is a bit
akward. It works, but I don’t advise to run the detection on large amounts of binary
files, since a lot binary files would (incorrectly) turn out to be MP3s. If you want
to be sure about a file being a MP3, use the EMP3 unit to get the MP3-ID tag. If
this call is successful, the file is almost certainly a MP3 file. However a lot of valid
MP3’s don’t have a MP3-ID, so this method is also not fail safe.

6.2 Functions and procedures

6.2.1 ArchiveMethod

Declaration: FUNCTION ArchiveMethod(FileName : String) : ArchiveType; (see section
6.1)

Description: This function tries to identify the file-type of FileName. The function looks IN
the file, it does not simply look at the extension. Also most detectionschemes are
tested (in the Modula-2 version of XTDFPC), and quite secure. (see errors)

Errors: MP3 see section 6.1

43

The EFIO unit. 6.2. FUNCTIONS AND PROCEDURES

DWC The DWC-detection is not implemented, the value is only reserved for future
use. GIF, LBM, PCX, WAV, BMP These detections work, but since most of these
formats come in 20 different flavours additional detections will be necessary.

See also: section 6.1

Uses EFIO;

VAR FileName : String ;

BEGIN
FileName :=’c:\xtdfpc18.zip’ ;
Write(Filename , ’ is of type : ’) ;
CASE ArchiveMethod (FileName) OF

None : Writeln (’No archive type supported’) ;
SQZ : writeln (’SQZ’) ;
ZIP : writeln (’ZIP’) ;
HPK : writeln (’HPK’) ;
ZOO : writeln (’ZOO’) ;
LZH : writeln (’LZH’) ;
ARJ : writeln (’ARJ’) ;
DWC : writeln (’DWC’) ; {Detect ion not working yet }
ARC : writeln (’ARC’) ;
PAK : writeln (’PAK’) ;
A7P : writeln (’A7P’) ;
HYP : writeln (’HYP’) ;
RAR : writeln (’RAR’) ;
Q : writeln (’Q’) ;
UC2 : writeln (’UC2’) ;
GIF : writeln (’GIF’) ;
LBM : writeln (’LBM’) ;
PCX : writeln (’PCX’) ;
WAV : writeln (’WAV’) ;
BMP : writeln (’BMP’) ;

ELSE
Writeln (’Unknown format (supported by Archivemthod, but not by this example)’) ;

END; {Case}
END.

6.2.2 FileExists

Declaration: FUNCTION FileExists(FileName: String): Boolean;

Description: This boolean function returns True if the file FileName exists, else it returns False.
Closes the file if it exists, principe copied from the BP7 help.

Errors: Seems not to work for a directory. (That requires a FileExists based on FindFirst
FindNext, instead of trying to open the file)

Uses EFIO;

BEGIN

44

The EFIO unit. 6.2. FUNCTIONS AND PROCEDURES

IF F i l e E x i s t s (’C:\autoexec.bat’) THEN
Writeln (’This is probably a msdos system’)

ELSE
Writeln (’This is probably no msdos system’) ;

END.

6.2.3 WrHex

Declaration: PROCEDURE WrHex (InValue:WORD);
PROCEDURE WrHex (VAR F : Text;InValue:WORD);

Description: This procedure translates the binary value InValue to a 4 characters hex repre-
sentation, and outputs it to stdout or file F.

Errors: None, but in Delphi mode HexStr exists which does the same.

See also: WrBinary (46) WrLngBinary (46) WrLngHex (45) WrOct (46) WrLngOct (46)

uses EFIO;

VAR Value16 : WORD;
Value32 : LONGINT;

BEGIN
Value16 := 12345 ; { Define a 16 b i t s va lue }
Value32 := 1234567890 ; { Define a 32 b i t s va lue }

Write(Value16 , ’ decimal = $’) ; WrHex(value16) ; Write(’ hexadecimal , ’) ;
WrOct(Value16) ; Write(’o octal and %’) ; WrBinary (value16) ; writeln (’ binary.’) ;

Write(Value32 , ’ decimal = $’) ; WrLngHex(value32) ; Write(’ hexadecimal , ’) ;
WrLngOct(Value32) ; Writeln (’o octal’) ;
Write(’ and %’) ; WrLngBinary (value32) ; writeln (’ binary.’) ;

END.

6.2.4 WrLngHex

Declaration: PROCEDURE WrLngHex (InValue:CARDINAL);
PROCEDURE WrLngHex (VAR F:Text;InValue:CARDINAL);

Description: This procedure translates the binary value InValue to a 8 character hex represen-
tation, and outputs it to stdout or file F.

Errors: None, but in Delphi mode HexStr exists which does the same.

See also: WrBinary (46) WrLngBinary (46) WrHex (45) WrOct (46) WrLngOct (46)

For an example see WrHex (45)

45

The EFIO unit. 6.2. FUNCTIONS AND PROCEDURES

6.2.5 WrOct

Declaration: PROCEDURE WrOct (InValue:WORD);
PROCEDURE WrOct (VAR F : Text;InValue:WORD);

Description: This procedure translates the binary value InValue to a 6 characters octal repre-
sentation, and outputs it to stdout or file F.

Errors: None

See also: WrBinary (46) WrLngBinary (46) WrHex (45) WrLngHex (45) WrLngOct (46)

For an example see WrHex (45)

6.2.6 WrLngOct

Declaration: PROCEDURE WrLngOct (InValue:CARDINAL);
PROCEDURE WrLngOct (VAR F:Text;InValue:CARDINAL);

Description: This procedure translates the binary value InValue to an 11 character octal rep-
resentation, and outputs it to stdout or file F.

Errors: None

See also: WrBinary (46) WrLngBinary (46) WrHex (45) WrLngHex (45) WrOct (46)

For an example see WrHex (45)

6.2.7 WrBinary

Declaration: PROCEDURE WrBinary (InValue:WORD);
PROCEDURE WrBinary (VAR F : Text;InValue:WORD);

Description: This procedure translates the binary value InValue to a 16 characters binary
representation, and outputs it to stdout or file F.

Errors: None, but in Delphi mode BinStr exists which does the same.

See also: WrLngBinary (46) WrHex (45) WrLngHex (45) WrOct (46) WrLngOct (46)

For an example see WrHex (45)

6.2.8 WrLngBinary

Declaration: PROCEDURE WrLngBinary (InValue:CARDINAL);
PROCEDURE WrLngBinary (VAR F:Text;InValue:CARDINAL);

Description: This procedure translates the binary value InValue to an 32 character binary
representation, and outputs it to stdout or file F.

Errors: None, but in Delphi mode BinStr exists which does the same.

See also: WrBinary (46) WrHex (45) WrLngHex (45) WrOct (46) WrLngOct (46)

For an example see WrHex (45)

46

The EFIO unit. 6.2. FUNCTIONS AND PROCEDURES

6.2.9 ExtensionPos

Declaration: FUNCTION ExtensionPos (CONST s : String) : WORD;

Description: Returns the position of the extension in path s, or MAX(WORD) (=65535) if no
extension was found. Actually this function was internal, but the function can be
used to check if extension exists, so I moved it to the interface.

Errors: None.

See also: ChangeExtension (48) RemoveExtension (47) AddExtension (47)

Uses EFIO;

VAR Name, Ext : String ;

BEGIN
Name:=’Hello.tar.gz’ ;
Writeln (’Original Name : ’ , Name) ;
RemoveExtension (Name) ;
ChangeExtension (Name, ’tgz’) ;
Writeln (’New name : ’ , Name) ;
RemoveExtension (Name) ;
AddExtension (Name, ’tar.bz2’) ;
Writeln (’Repacked name : ’ , Name) ;
Writeln ;
Write(’Let’#39’s determine the basename of ’ , Name) ;
WHILE ExtensionPos (Name)<>65535 DO RemoveExtension (Name) ;

Writeln (’ Base name: "’ , Name, ’"’) ;

END.

6.2.10 RemoveExtension

Declaration: PROCEDURE RemoveExtension (VAR s : String) ;

Description: Calls ExtensionPos, and deletes the (last) extension if it exists.

Errors: None.

See also: ChangeExtension (48) ExtensionPos (47) AddExtension (47)

For an example see ExtensionPos (47)

6.2.11 AddExtension

Declaration: PROCEDURE AddExtension (VAR s : String; CONST Extension : String) ;

Description: Under Linux or when LfnSupport=TRUE : Add (another) extension to S. If Lfn-
Support=FALSE : Only add an extension to S of none present.

Errors: None, but note different behaviour depending on LfnSupport.

See also: RemoveExtension (47) ExtensionPos (47) ChangeExtension (48)

For an example see ExtensionPos (47)

47

The EFIO unit. 6.2. FUNCTIONS AND PROCEDURES

6.2.12 ChangeExtension

Declaration: PROCEDURE ChangeExtension (VAR s : String; CONST Extension : String)
;

Description: Changes the (last) extension of the filename in S to extension. If no extension
exists, the extension is added.

Errors: None.

See also: RemoveExtension (47) ExtensionPos (47) AddExtension (47)

For an example see ExtensionPos (47)

6.2.13 WrStrAdj

Declaration: PROCEDURE WrStrAdj(CONST InS: String;L : LONGINT);
PROCEDURE WrStrAdj(VAR F: Text;CONST InS: String;L : LONGINT);

Description: This procedure is roughly the same as write(Ins:L) but pads on the other side if L
is smaller than zero.

Errors: None.

Uses EFIO;

BEGIN
Writeln (’012345678901234567890123456789 ’) ;
WriteLn(’"’ , ’text’ : 25 , ’"’) ;
Write(’"’) ; WrStrAdj (’text’ , 25) ; Writeln (’"’) ;
Write(’"’) ; WrStrAdj (’text’ ,−25) ; Writeln (’"’) ;

END.

6.2.14 Touch

Declaration: PROCEDURE Touch(Const FileName:String);

Description: Simply the well known touch command (Set filetimedate of file(s) to current date-
time). Directories and wildcards supported. NOT recursive. Use EDirTree or
ODirTree to run a procedure like this recursive.

Errors: None.

No example yet.

6.2.15 DelDir

Declaration: PROCEDURE Deldir(Dir : PathStr);

Description: CAUTION, DANGERUOUS Recursively removes all contents of DIR, hidden files and
directories inclusive, like MsDos Deltree, or Linux rm -rf.

Errors: Hasn’t been thoroughly tested on Linux or Win32. Should be safe, but test care-
fully. (e.g. on substed drive)

48

The EFIO unit. 6.2. FUNCTIONS AND PROCEDURES

6.2.16 FileAppend

Declaration: PROCEDURE FileAppend(VAR F :Text; CONST FileName:String);

Description: Performs Assign (F,S); Append(F); but creates the file if it doesn’t exists.

Errors: None.

uses EFIO;

VAR F : Text ;

CONST Filename=’test.txt’ ;

BEGIN
Assign (F, Filename) ;
Rewrite (F) ;
Writeln (F, ’operation one’) ;
Close (F) ;
FileAppend (F, Filename) ;
Writeln (F, ’Operation two’) ;
Close (F) ;

END.

6.2.17 MkFullDir

Declaration: PROCEDURE MkFullDir(CONST InPath:String);

Description: Create a directory, but the procedure also works for ’d:
prog
compilers
pp’ if ’d:
prog’ doesn’t exist.

Errors: Go32V2 : The drive(if specified) must exist though.

No example yet.

6.2.18 WrArrChar

Declaration: PROCEDURE WrArrChar(Data : PChar; sizedata: LONGINT);

Description: This procedure outputs the first sizedata bytes from Data to screen, replacing
CHR(0) and CHR(13) by a linefeed (using writeln).

The procedure was created because of the fact that FPC can’t have textual con-
stants longer than 255. I created a workaround (see ../devel/data2inc.pp), and this
procedure is the output part of it. Most of my demos use this procedure to write
their ”usage-screen” to stdout.

Errors: None, but be aware that Data is not an ordinary PCHAR! SizeData bytes will be
printed, regardless of CHR(0)’s in Data!

No example yet, see demos like crtolf and indexer.

49

Chapter 7

ELib

ELib used to be the biggest unit by far (100+ procedures) in the Modula2 version,
because it was a kind of miscellaneous assembler unit

In Pascal it’s a lot smaller, and contains a few OSdependant and platform dependant
routines. Mainly primitives for lowlevel and interfacing procedures.

Some of the functions now have a RTL equivalent. When I do the next face-lift of
this unit, those procedure will dissappear

7.1 Types

7.1.1 CHARSET

Declaration: TYPE CHARSET = SET OF CHAR;

Description: Defining this simple type saves a lot of trouble in Modula-2. This is a bit less
important in Pascal (because you can define set of chars constants without a type
identifier). I however think it’s cleaner, and also EPasStr routines depend on it. Also
you base your procedures on a identifier which you can change without redefining
a compiler type. This can be handy for 16-bits character types, though that is not
really planned for now.

See also: chapter 9

7.2 Procedures and Functions

7.2.1 FillCard

Declaration: PROCEDURE FillCard(var x;count : LONGINT;value : cardinal);

Description: FillChar, FillWord, and.....

Yes, FillCard. Fill memoryblock starting on address X with Count times value. So
a block 4*Count will be filled because CARDINAL is 4 bytes wide. Can also be
used for filling with a longint, but you’ll need an (implicit) typecast for that.

See also: none.

50

ELib 7.2. PROCEDURES AND FUNCTIONS

7.2.2 ScanR

Declaration: FUNCTION ScanR(VAR Adr;Value : BYTE;Count: LONGINT):LONGINT;

Description: Search for byte Value in memory block starting on address adr, for maximal Count
bytes. Returns zerobased offset with respect to adr, or 1 when Value isn’t found.

In fact this is a ”rep scasb” instruction with Pascal header and some instructions
that handle the notfound case.

See also: None.

7.2.3 ISqrt

Declaration: FUNCTION ISqrt(Indata:CARDINAL):CARDINAL;

Description: Equivalent to ISqrt:=Trunc(SQR(Float(InData)));

Square root of Indata rounded down. Entirely integer, no reals used. Old 386sx
trick, and my first 32-bits code :-) Probably a lot slower than copro today, since it
uses a loop. Assembler FPUroot is one instruction :). Well, nostalgia it is then.

7.2.4 GetKey

Declaration: FUNCTION GetKey:WORD;

Description: This is the oldest procedure in entire XTDLIB. It’s a shell to the Crt ReadKey
procedure, which avoids problems with function keys. Function keys (like F1) are
returned to ReadKey as two characters, the first being zero. GetKey simply calls
ReadKey, and if ReadKey is zero, it calls ReadKey again and returns the second
readkey SHL 8.

See also: Keys.inc contains some standard values for GetKey

7.2.5 SetCursorSize

Declaration: PROCEDURE SetCursorSize(A:WORD);

Description: BIOS function, so Go32V2 (and maybe Go32V1) only. BP equivalent implemented
in BPGo32.pas

Set cursorsize, the high byte is the first scanline, the low byte the last (lowest)
scanline. A form of this procedure is included in Crt (SetCurSize($090A) is the
same as Crt.CursorOn, and SetCurSize($FFFF) as CursorOff) but not exported.

chapter 10 uses this procedure and GetCursorSize (51) to save and restore cursorset-
tings when changing windows.

Another application is to save deviating cursorshapes before shelling to dos, and
restore afterwards.

See also: GetCursorSize (51)

7.2.6 GetCursorSize

Declaration: FUNCTION GetCursorSize:WORD;

51

ELib 7.2. PROCEDURES AND FUNCTIONS

Description: BIOS function, so Go32V2 (and maybe Go32V1) only. BP equivalent implemented
in BPGo32.pas

Stores the cursorshape in a word. The high byte is the first scanline, the low byte
the last (lowest) scanline.

chapter 10 uses this procedure and SetCursorSize (51) to save and restore cursorset-
tings when changing windows.

Another application is to save deviating cursorshapes before shelling to dos, and
restore afterwards

See also: SetCursorSize (51)

7.2.7 set fs to dosmem

Declaration: PROCEDURE set fs to dosmem;

Description: (Go32V2) only

This procedure reloads %fs with DOSMEMSELECTOR, which it should be. Can
be handy to do this after very lowlevel and/or odd assembler or external routines,
to reset %fs to point to dos real mode memory.

See also: None.

52

Chapter 8

The EMP3 unit.

This unit DOES NOT play MP3’s or anything like that. It’s only a check for the
MP3filetype, plus the reading/writing of the standard MP3-tag.

The EMP3 unit has emerged from a failed effort to update ArchiveMethod (43)
to recognize MP3 files. The detection was different from the others, and more
complicated. Since meanwhile I also implementing reading and writing tags, I
decided to give MP3 its own unit.

The main demonstration program for this unit is File2Tag, which converts the
filename (and path), to an mp3tag.

8.1 How the MP3 Check is implemented

The detection of MP3 files is somewhat difficult. It’s based on finding a byte $FF
(255 decimal), and then a byte with the highnibble set to $F.

However this doesn’t necessarily has to exist at the beginning of a file, or even
within the first 5kb of a file. The detectionroutine (IsMp3 (56)) of this unit checks
for the sequence $FF $Fx with x not equal to $F in the first 12kb. The reason for
not allowing $FF, $FF is because some valid MP3 files with some header prefixed
have this value in their header. Adding this restrain increased reliability of the
check.

I think for the detection to be better, I need to now more about the format. I guess
some of the bytes after the first signature indicate the number of bytes to the next
signature. This isn’t implemented.

I tested on some random files. If you run this detection routine on random binary
files you will probably find a nice percentage non-mp3 files detected as mp3-files.
So I suggest you only test on files which ARE probably mp3 files (extension .mp3).
If you do so, the IsMp3 (56) is quite reliable again. All files that ARE mp3 files,
but not detected as such, are not standard MP3 files. Probably most mp3players,
maybe except the major MP3 players (read WinAmp) won’y read them. I (and a
friend) tested 4000 files, and less than 0.1failed the test. Anything that improves
the detection is welcome.

8.2 Types and constants

53

The EMP3 unit. 8.2. TYPES AND CONSTANTS

8.2.1 Genre byte

The MP3 tag provides one entire byte to store some genre information. As far as I
know, the first 80 (0..79) ordinal values are predefined.

I defined constants for all values, and even an array with a short (10 character)
textual description of each value in the includefile genretag.inc.

8.2.2 Genre

Declaration: CONST Genre : ARRAY[0..79] OF String[10]= (declarations)

Description: ”Genre” is an array [0..79] of string[10], filled with a short textual description of
each corresponding genre ordinal (subsection ??)

See also: subsection 54 ID3 constants (54)

8.2.3 ID3 constants

Declaration: CONST ID3 somegenre=somevalue

Description: The ordinal values of the genres as constants.

See also: subsection 54 Genre (54)

8.2.4 Gettag errorcodes

Declaration: CONST MP3 TAG ALLOK = 0; MP3 TAG NOT FOUND = 1; Returned by GetTag when
no tag was found MP3 TAG GET ERROR = 2; Returned by GetTag when retrieving
tag failed (probably file too small) MP3 TAG PUT ERROR = 3; Returned by
SetTag when saving tag failed (probably disk full or file/network write
protected)

Description: These codes are returned by GetTag (55) to indicate success or failure

See also: GetTag (55), SetTag (55)

8.2.5 BitRates

Declaration: CONST BitRates : ARRAY [1..2,1..3,1..15] OF INTEGER= (((0,32,64,96,128,160,192,224,256,288,320,352,384,416,448),
(0,32,48,56, 64, 80, 96,112,128,160,192,224,256,320,384), (0,32,40,48,
56, 64, 80, 96,112,128,160,192,224,256,320)), ((0,32,48,56, 64, 80, 96,112,128,144,160,176,192,224,256),
(0, 8,16,24, 32, 40, 48, 56, 64, 80, 96,112,128,144,160), (0, 8,16,24,
32, 40, 48, 56, 64, 80, 96,112,128,144,160)));

Description: This array returns the bitrate if you know Mpeg type, layer and an ordinal for
bitrate.

The indexes are
mpeg, layer, speedcode

. The speedcode is found by the following formula: (Ident AND $F00000) SHR 20.
Ident is the returncode of IsMp3 (56) when it’s not 1. (which means no valid MP3).
(see sourcecode of DumpIndentifier (??) for an example of what information you
can extract out of a Ident returnvalue)

See also: IsMp3 (56), DumpIndentifier (??) SampleFreq (55)

54

The EMP3 unit. 8.3. PROCEDURE AND FUNCTIONS

8.2.6 SampleFreq

Declaration: CONST SampleFreq : ARRAY[1..2,0..2] OF WORD= ((44100 , 48000 , 32000),
(22050 , 24000 , 16000));

Description: This array returns the samplefrequency Mpeg type and an index for the frequency.

The indexes are [(mpeg-1) XOR 1,freqcode]. The freqcode is found by the following
formula: (Ident AND $C0000) SHR 18. Ident is the returncode of IsMp3 (56) when
it’s not 1. (1 means no valid MP3). (see sourcecode of DumpIndentifier (??) for
an example of what information you can extract out of a Ident returnvalue)

See also: IsMp3 (56), DumpIndentifier (??), BitRate (??)

8.2.7 ID3Tag

Declaration: type ID3TAG = Record Used for easy update’ing, tags are internally array
of char Songname : String[30]; Artist : String[30]; Album : String[30];
Year : String[4]; Comment : String[30]; GenreID : Byte; end;

Description: This records represents a MP3tag. It can be read and written by using GetTag
(55) and SetTag (55).

The record is not binary compatible with the actual mp3tag. (which is array of
char style, packed, and has an identifier field), but the translation is done by the
procedure that read and write the tag. I just mention it, so that you won’t try to
write it directly :)

See also: SetTag (55), GetTag (55)

8.3 Procedure and functions

8.3.1 GetTag

Declaration: FUNCTION GetTag(CONST Filename:String;VAR Tag : ID3Tag):LONGINT;

Description: Checks if the filename has a valid MP3 (ID3)tag, and reads it or returns a code
indicating an error took place (Gettag errorcodes (54)).

If the procedure finds a valid tag, it converts the tag to a bit more usable record
(pascal string instead of padded array of char).

See also: SetTag (55) ID3Tag (55), Gettag errorcodes (54), DumpTag (56)

8.3.2 SetTag

Declaration: FUNCTION SetTag(CONST Filename:String;CONST Tag : ID3Tag):LONGINT;

Description: Writes the ID3tag to filename FileName. If an tag is already present, the tag is
replaced by the Tag, otherwise Tag is appended.

See also: GetTag (55) ID3Tag (55), Gettag errorcodes (54), DumpTag (56)

55

The EMP3 unit. 8.3. PROCEDURE AND FUNCTIONS

8.3.3 IsMp3

Declaration: FUNCTION IsMp3(FileName:String):LONGINT;

Description: Detects if filename is a MP3 file. If yes, than return 32bit identifier as a
LONGINT (e.g. FF FE 01 02 becomes $0201FEFF) If it isn’t, return 1

See DumpIndentifier (??) for what you can do with the returnvalue.

See also: DumpIndentifier (??)

8.3.4 DumpTag

Declaration: Procedure DumpTag(Tag:ID3Tag);

Description: Prints the value of a mp3tag record to screen. More a debug procedure, but can
be useful.

See also: GetTag (55), SetTag (55), ID3Tag (55)

8.3.5 DumpIdenti�er

Declaration: Procedure DumpIdentifier(Ident:LONGINT);

Description: This procedure analyses the returnvalue of IsMp3 (56) and displays some of the
values (using BitRates (54) and SampleFreq (55)

The use of this procedure is quite little, except for debug purposes, but you can
look at the source, and see how it obtains its data.

See also: GetTag (55), SetTag (55), ID3Tag (55)

56

Chapter 9

The EPasStr unit.

This is the documentation for EPASSTR unit which contains the pascal and ANSI
string routines of XTDFPC.

The main target is FPC (Linux and Go32V2 tested), though the non assembler
routines will work with BP. (the generic include file of XTDFPC will automatically
turn off the assembler when epasstr is compiled for BP)

Please note that right now, the AnsiString routines are alpha, and only sparsely
tested.

9.1 Functions and procedures.

9.1.1 LTrim

Declaration: PROCEDURE LTrim (VAR P : String;Ch:CHAR);
PROCEDURE LTrim (VAR P : AnsiString;Ch:CHAR);

Description: Strips all characters Ch from the left (beginning) of the string P.

Errors: Pascal string : None, AnsiString: Untested

See also: RTrim (57), KillChar (58), KillBChar (58), KillChrTot (59), StripChar (59)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’ text’ ;
LTrim(P, ’ ’) ;
Writeln (P) ; {wri t e s ’ t e x t ’}

END.

9.1.2 RTrim

Declaration: PROCEDURE RTrim(VAR P:String;Ch:Char);
PROCEDURE RTrim(VAR P:AnsiString;Ch:Char);

Description: Strips all characters Ch from the right (the end) of the string P.

57

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

Errors: Pascal string : None, AnsiString: Untested

See also: LTrim (57), KillChar (58), KillBChar (58), KillChrTot (59), StripChar (59)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’text ’ ;
RTrim(P, ’ ’) ;
Writeln (P) ; {wri t e s ’ t e x t ’}

END.

9.1.3 KillChar

Declaration: PROCEDURE KillChar(VAR S : STRING;CONST CSet:CHARSET);
PROCEDURE KillChar(VAR S : AnsiString;CONST CSet:CHARSET);

Description: LTrim (57) but then for an entire character set. Strips all characters in set CSet
from the begin (left) of string P.

Errors: Pascal string : None, AnsiString: Untested

See also: LTrim (57), RTrim (57), KillBChar (58), KillChrTot (59), StripChar (59)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’A B A B A Btext’ ;
Kil lChar (P, [’A’ , ’B’ , ’ ’]) ;
Writeln (P) ; {wri t e s ’ t e x t ’}

END.

9.1.4 KillBChar

Declaration: PROCEDURE KillBChar(VAR S : String;CONST CSet:CHARSET);
PROCEDURE KillBChar(VAR S : AnsiString;CONST CSet:CHARSET);

Description: (RTrim (57) but then for an entire character set). Strips all characters in set CSet
from the end (right) of string P.

Errors: Pascal string : None, AnsiString: Untested

See also: LTrim (57), RTrim (57), KillChar (58), KillChrTot (59), StripChar (59)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’textA B A B A B’ ;
KillBChar (P, [’A’ , ’B’ , ’ ’]) ;
Writeln (P) ; {wri t e s ’ t e x t ’}

END.

58

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

9.1.5 StripChar

Declaration: PROCEDURE StripChar(VAR S:String;C:CHAR);
PROCEDURE StripChar(VAR S:AnsiString;C:CHAR);

Description: Strips all characters C from string S.

Errors: Pascal string : None, AnsiString: Untested

See also: LTrim (57), RTrim (57), KillChar (58), KillBChar (58), KillChrTot (59)

Uses EPasStr ;

VAR P : string ;

BEGIN
P:=’text\ A A A A A ’ ;
StripChar (P, ’A’) ;
Writeln (P) ; {wri t e s ’ t e x t \ ’ }

END.

9.1.6 KillChrTot

Declaration: PROCEDURE KillChrTot(VAR S : String;CONST CSet:CHARSET);
PROCEDURE KillChrTot(VAR S : AnsiString;CONST CSet:CHARSET);

Description: Strips all characters in set CSet from string S.

Errors: Pascal string : None, AnsiString: Untested

See also: LTrim (57), RTrim (57), KillChar (58), KillBChar (58), StripChar (59)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’text\ A A A A A ’ ;
Kil lChrTot (P, [’A’ , ’ ’]) ;
Writeln (P) ; {wri t e s ’ t e x t \ ’}

END.

9.1.7 AppendBackSlash

Declaration: PROCEDURE AppendBackslash(VAR S : String);
PROCEDURE AppendBackslash(VAR S : AnsiString);

Description: Appends a backslash (’\’) to the end of string S if it’s not already there. Under
Linux it appends a ’/’. Used as a primitive for programs which create a lot of paths.

Using this procedure makes programs more safe. The Dos rtl procedures (the LFN
ones anyway) don’t work right on paths with two backslashes in it, probably because
of the UNC (\\server\share\) notation of networkdrives. Using (P)AppendBackslash
avoids such problems because it doesn’t append a backslash if it’s already there,
like S:=’S’+’\’+name; would.

59

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

Errors: Pascal string : None, AnsiString: Untested

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’text\’ ;
AppendBackslash (P) ;
Writeln (P) ; {wri t e s ’ t e x t \ ’}
P:=’text’ ;
AppendBackslash (P) ;
Writeln (P) ; {wri t e s ’ t e x t \ ’}

END.

9.1.8 ReplaceChar

Declaration: PROCEDURE ReplaceChar(VAR S : String;ReplaceMe,ReplaceWith:CHAR);
PROCEDURE ReplaceChar(VAR S : AnsiString;ReplaceMe,ReplaceWith:CHAR);

Description: Replace in string the character ReplaceMe with RepWith

Errors: Pascal string : None, AnsiString: Untested

See also: ExpandTabs (69), CompressTabs (69)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’text\ A A A A A ’ ;
ReplaceChar (P, ’A’ , ’B’) ;
Writeln (P) ; {wri t e s ’ t e x t \ B B B B B ’}

END.

9.1.9 CharPos

Declaration: FUNCTION CharPos(CONST S :String;C:Char):LONGINT;
FUNCTION CharPos(CONST S :AnsiString;C:Char):LONGINT;

Description: Pos (f) or one char (C) only. Faster than an ordinary Pos, returns 0 when character
not found, just like ordinary Pos.

CharPos starts searching at the beginning of the string.

Errors: Pascal string : None, AnsiString: Untested

See also: NextCharPos (61), RCharPos (61), NextRCharPos (62), CharPosSet (62), NextChar-
PosSet (62)

Uses EPasStr ;

VAR P : String ;

60

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

BEGIN
P:=’text\ A A A A A ’ ;
Writeln (CharPos (P, ’A’)) ; {wri t e s 7 }

END.

9.1.10 NextCharPos

Declaration: FUNCTION NextCharPos(CONST S:String;C:Char;Count:LONGINT):LONGINT;
FUNCTION NextCharPos(CONST S:AnsiString;C:Char;Count:LONGINT):LONGINT;

Description: seemPos for one char only. Faster than an ordinary Pos. This particular version
starts searching string S at character number count, and searches for C towards the
end of the string. The function returns a standard index in the string (1..Length(S),
or 0 when not found.

CharPos (60) starts searching at the beginning of the string.

Errors: Pascal string : None, AnsiString: Untested

See also: CharPos (60), RCharPos (61), NextRCharPos (62), CharPosSet (62), NextChar-
PosSet (62)

Uses EpasStr ;

VAR P : String ;

BEGIN
P:=’text\ A A A A A ’ ;
Writeln (NextCharPos (P, ’A’ , 8)) ; {wri t e s 9}

END.

9.1.11 RCharPos

Declaration: FUNCTION RCharPos(CONST S :String;C:Char):LONGINT;
FUNCTION RCharPos(CONST S :AnsiString;C:Char):LONGINT;

Description: Pos (f) or one char only. Faster than an ordinary Pos, returns 0 when not found.
This version starts searching for C at the back of the string S, back to the beginning.
The function returns a standard index in the string. (1..Length(S), or 0 if character
C was not found).¡p¿

Errors: Pascal string : None, AnsiString: Untested

See also: CharPos (60), NextCharPos (61), NextRCharPos (62), CharPosSet (62), NextChar-
PosSet (62)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’text\ A A A A A ’ ;
Writeln (RCharPos (P, ’A’)) ; {wri t e s 15 }

END.

61

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

9.1.12 NextRCharPos

Declaration: FUNCTION NextRCharPos(CONST S:String;C:Char;Count:LONGINT):LONGINT;
FUNCTION NextRCharPos(CONST S:AnsiString;C:Char;Count:LONGINT):LONGINT;

Description: Pos (f) or one char only. Faster than an ordinary Pos, returns 0 when charac-
ter C was not found. This version starts searching for C at the position Count
(1..Length(S)) back to the beginning (1) of the string S. The function returns a
standard index in the string. (1..Length(S), or 0 if character C was not found).¡p¿

Errors: Pascal string : None, AnsiString: Untested

See also: CharPos (60), NextCharPos (61), RCharPos (61), CharPosSet (62), NextCharPosSet
(62)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’text\ A A A A A ’ ;
Writeln (NextRCharPos (P, ’A’ , 14)) ; {wri t e s 13 (the l a s t but one A)}

END.

9.1.13 CharPosSet

Declaration: FUNCTION CharPosSet(CONST S : String;CONST CSet:CHARSET):LONGINT;
FUNCTION CharPosSet(CONST S : AnsiString;CONST CSet:CHARSET):LONGINT;

Description: Returns the first occurance in string S of a character in charset CSet, returns 0
when no matching character was found, the position of the character (1..Length(S))
otherwise.

Errors: Pascal string : None, AnsiString: Untested

See also: CharPos (60), NextCharPos (61), RCharPos (61), NextRCharPos (62), NextChar-
PosSet (62)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’text\ A A A A A ’ ;
Writeln (CharPosSet (P, [’A’ , ’\’])) ; {wri t e s 5 }

END.

9.1.14 NextCharPosSet

Declaration: FUNCTION NextCharPosSet(CONST S : String;CONST C:CHARSET;Count:LONGINT):LONGINT;
FUNCTION NextCharPosSet(CONST S : AnsiString;CONST C:CHARSET;Count:LONGINT):LONGINT;

Description: Returns the (next) occurance in string S of a character in charset CSet, while
starting on positionz returns 0 when no matching character was found, the position
of the character (1..Length(S)) otherwise.

62

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

Errors: Pascal string : None, AnsiString: Untested

See also: CharPos (60), NextCharPos (61), RCharPos (61), NextRCharPos (62), NextChar-
PosSet (62)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’text\ A B A A A ’ ;
Writeln (NextCharPosSet (P, [’A’ , ’B’] , 8)) ; {wri t e s 9}

END.

9.1.15 StripDoubleChar

Declaration: PROCEDURE StripDoubleChar(VAR S:String;C:Char);
PROCEDURE StripDoubleChar(VAR S:AnsiString;C:Char);

Description: If 2 or more sequential ’C’ chars exist in string, strip all but one ’ 1 2 3 5 6 ’
becomes ’ 1 2 3 5 6 ’ Used to make mail from Fido-newbies readable (run it for ’
’,’.’ and ’ !’) :-)

Errors: Pascal string : None, AnsiString: Untested

See also: ReplaceChar (60)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’ 1 2 3 4 5’ ;
StripDoubleChar (P, ’ ’) ;
Writeln (P) ; { Writes ’ 1 2 3 4 5 ’}

END.

9.1.16 LowerCase

Declaration: PROCEDURE LowerCase(VAR S : String);
PROCEDURE LowerCase(VAR S : AnsiStrng);

Description: All (normal, not international ones) characters lowercase

Errors: Pascal string : None, AnsiString: Untested

See also: UpperCase (64)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’ABCDE’ ;
LowerCase (P) ;
Writeln (P) ; {wri t e s ’ abcde ’}

END.

63

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

9.1.17 UpperCase

Declaration: PROCEDURE UpperCase(VAR S : String);
PROCEDURE UpperCase(VAR S : AnsiStrng);

Description: All (normal, not international ones) characters lowercase

Errors: Pascal string : None, AnsiString: Untested

See also: LowerCase (63)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’abcde’ ;
UpperCase (P) ;
Writeln (P) ; {wri t e s ’ABCDE’}

END.

9.1.18 StrToBinary

Declaration: FUNCTION StrToBinary(CONST S : String;Bits : CARDINAL):CARDINAL;
FUNCTION StrToBinary(CONST S : AnsiString;Bits : CARDINAL):CARDINAL;

Description: Get first Bits bits or digits from S (like S:=’0101010’), and return their binary
value. Allowable range Bits range is 0..32, though 0 is useless (returns 0)

Errors: Pascal string : None, AnsiString: Untested

See also: StrToOct (64) StrToHex (65) OctToStr (65) HexToStr (66) BinaryToStr (65)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’010101010101010 ’ ;
Writeln (StrToBinary (P, Length (P))) ; {wri t e s ’ 10922 ’}
P:=’666’ ;
Writeln (StrToOct (P, Length (P))) ; {wri t e s ’ 438 ’}
P:=’800’ ;
Writeln (StrToHex (P, Length (P))) ; {wri t e s ’ 2048 ’}

END.

9.1.19 StrToOct

Declaration: FUNCTION StrToOct (CONST S : String;Digits: CARDINAL):CARDINAL;
FUNCTION StrToOct (CONST S : AnsiString;Digits: CARDINAL):CARDINAL;

Description: Get first Digits octal digits from S (like S:=’766’), and return their binary value.
(766o=502d) Allowable range Digits range is 0..11, (=8log(23̂2) rounded upward)
though 0 is useless (returns 0).

Errors: Pascal string : None, AnsiString: Untested

64

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

See also: StrToBinary (64) StrToHex (65) OctToStr (65) HexToStr (66) BinaryToStr (65)

For an example, see StrToBinary (64)

9.1.20 StrToHex

Declaration: FUNCTION StrToHex (CONST S : String;Digits: CARDINAL):CARDINAL;
FUNCTION StrToHex (CONST S : AnsiString;Digits: CARDINAL):CARDINAL;

Description: Get first Digits hex digits from S (like S:=’8FA’), and returns their binary value.
Allowable range Digits range is 0..8, though 0 is useless (returns 0).

Errors: Pascal string : None, AnsiString: Untested

See also: StrToBinary (64) StrToOct (64) OctToStr (65) HexToStr (66) BinaryToStr (65)

For an example, see StrToBinary (64)

9.1.21 BinaryToStr

Declaration: PROCEDURE BinaryToStr(VAR S : String;Value,Bits : CARDINAL);
PROCEDURE BinaryToStr(VAR S : AnsiString;Value,Bits : CARDINAL);

Description: Convert Value to a binary representation and write it to S, the procedure always
writes Bits digits/bits. If you specify more bits (Like in BinaryToStr(S,1,10)), the
result will be left padded with zeroes. If you specify Bits less than the number of
bits needed to represent Value, only the rightmost Bits digits will be written. (like
Value was ANDed with 2ˆBits-1)

The Bits parameter can lie in the range 0..32, but 0 does nothing.

Errors: Pascal string : None, AnsiString: Untested

See also: StrToBinary (64) StrToOct (64) StrToHex (65) BinaryToStr (65) HexToStr (66)

Uses EPasStr ;

VAR S : String ;

BEGIN
BinaryToStr (S , $2AAA, 16) ;
Writeln ($2AAA, ’ = ’ , S , ’b’) ;
OctToStr (S , $2AAA, 6) ;
Writeln ($2AAA, ’ = ’ , S , ’o’) ;
HexToStr (S , $2AAA, 4) ;
Writeln ($2AAA, ’ = ’ , S , ’h’) ;

END.

9.1.22 OctToStr

Declaration: PROCEDURE OctToStr (VAR S : String;Value,Digits : CARDINAL);
PROCEDURE OctToStr (VAR S : AnsiString;Value,Digits : CARDINAL);

65

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

Description: Convert Value to an octal representation and write it to S, the procedure always
writes Digits digits. If you specify more Digits, the result will be left padded
with zeroes. If you specify Digits less than the number of bits needed to represent
Value, only the rightmost Bits digits will be written. (like Value was ANDed with
23̂*Digits-1)

The Digits parameter can lie in the range 0..32, but 0 does nothing.

Errors: Pascal string : None, AnsiString: Untested

See also: StrToBinary (64) StrToOct (64) StrToHex (65) OctToStr (65) HexToStr (66)

For an example, see BinaryToStr (65)

9.1.23 HexToStr

Declaration: PROCEDURE HexToStr (VAR S : String;Value,Digits : CARDINAL);
PROCEDURE HexToStr (VAR S : AnsiString;Value,Digits : CARDINAL);

Description: Convert Value to an hexadecimal representation and write it to S, the procedure
always writes Digits digits. If you specify more Digits, the result will be left
padded with zeroes. If you specify Digits less than the number of bits needed to
represent Value, only the rightmost Bits digits will be written. (like Value was
ANDed with 2(̂4*Digits)-1)

The Digits parameter can lie in the range 0..32, but 0 does nothing.

Errors: Pascal string : None, AnsiString: Untested

See also: StrToBinary (64) StrToOct (64) StrToHex (65) OctToStr (65) HexToStr (66)

For an example, see BinaryToStr (65)

9.1.24 LGrow

Declaration: PROCEDURE LGrow(VAR S: STRING;Ch:CHAR;Count:LONGINT);
PROCEDURE LGrow(VAR S: AnsiString;Ch:CHAR;Count:LONGINT);

Description: If Length (() S)¡Count then pad at the beginning of the string with character C
until Length(S) (=) Count

Errors: Pascal string : None, AnsiString: Untested

See also: RGrow (67)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’1’ ;
LGrow(P, ’ ’ , 10) ;
Writeln (P) ; { Writes ’ 1 ’}
RGrow(P, ’ ’ , 20) ;
Writeln (P) ; { Writes ’ 1 ’ }

END.

66

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

9.1.25 RGrow

Declaration: PROCEDURE RGrow(VAR S : String;C:CHAR;Count:LONGINT);
PROCEDURE RGrow(VAR S : AnsiString;C:CHAR;Count:LONGINT);

Description: If Length (() S)¡Count then pad at the end of the string with character C until
Length(S) (=) Count

Errors: Pascal string : None, AnsiString: Untested

See also: LGrow (66)

For an example, see LGrow (66)

9.1.26 StrStr

Declaration: PROCEDURE StrStr(VAR P:String;C:Char;Count:LONGINT);
PROCEDURE StrStr(VAR P:AnsiString;C:Char;Count:LONGINT);

Description: Fill P with Count times C. (the old basic function String$)

Errors: Pascal string : None, AnsiString: Untested

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’1’ ;
StrStr (P, ’ ’ , 10) ;
Writeln (P) ; { Writes ’ ’ }

END.

9.1.27 Item procedures

Declaration: PROCEDURE Item(VAR R: STRING; CONST S: STRING; T: CHAR; N: LONGINT);
PROCEDURE Item(VAR R: STRING; CONST S: STRING; CONST T: CHARSET; N: LONGINT);
PROCEDURE ItemS(VAR R: STRING; CONST S: STRING; CONST T: String; N: LONGINT);
PROCEDURE Item(VAR R: AnsiString; CONST S: AnsiString; T: CHAR; N: LONGINT);
PROCEDURE Item(VAR R: AnsiString; CONST S: AnsiString; CONST T: CHARSET;
N: LONGINT);
PROCEDURE ItemS(VAR R: AnsiString; CONST S: AnsiString; CONST T: String;
N: LONGINT);

Description: These procedures are variations on the same theme. The procedure parses S,
and returns the Nth substring which is delimited with characters from T in R, and
empties R if no such such substring exists. The variable T contains the separator
characters, which can be one single character, a CHARSET (=SET OF CHAR) or
a string with characters(ItemS).

The ItemS procedure merely converts the string to a CHARSET and then calls the
CHARSET procedure.

I use these procedures a lot. Specially when processing textfiles.

Errors: Pascal string : None, AnsiString: Untested

67

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

See also: GetBetween (68)

Uses EPasStr ;

VAR Source , Dest : String ;
A : WORD;

BEGIN
Source :=’ hello1 hello2 hello3 hello4 ’ ;
FOR A := 0 TO 4 DO
BEGIN

Write(A, ’ ’) ;
Item (Dest , Source , ’ ’ , A) ;
IF Length (Dest)=0 THEN
Writeln (’Empty’)

ELSE
Writeln (Dest) ;

END;
END.
{
Prints :

0 h e l l o 1
1 h e l l o 2
2 h e l l o 3
3 h e l l o 4
4 Empty
}

9.1.28 GetBetween

Declaration: FUNCTION GetBetween(Source:String;VAR Dest:String;C1,C2:CHAR):BOOLEAN;
FUNCTION GetBetween(Source:AnsiString;VAR Dest:AnsiString;C1,C2:CHAR):BOOLEAN;

Description: Returns in Dest the string between the first occurance of C1 in Source and the
first occurance of C2 AFTER the 1st occurance of C1. If C1=C2, the procedure
returns the string between first and second occurance of C1.

Returns status (existance of both characters and position C1¡ C2)

Errors: Pascal string : None, AnsiString: Untested

See also: Item procedures (67)

Uses EPasStr ;

VAR Source , Dest : String ;

BEGIN
Source :=’0123456’ ;
GetBetween (Source , Dest , ’1’ , ’4’) ;
Writeln (Dest) ; { Writes ’ 23 ’}

END.

68

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

9.1.29 CommaStr

Declaration: PROCEDURE Commastr(var S : String;sep:CHAR);
PROCEDURE Commastr(var S : AnsiString;sep:CHAR);

Description: Inserts sep on every 3rd spot relative to the end of string S. (e.g. S:=’123456789’;
CommaStr(S,’,’) -¿ S:=’123,456,789’)

Errors: Assembler version not functional or buggy?

Uses EPasStr ;

VAR Source , Dest : String ;

BEGIN
Source :=’0123456’ ;
GetBetween (Source , Dest , ’1’ , ’4’) ;
Writeln (Dest) ; { Writes ’ 23 ’}

END.

9.1.30 CompressTabs

Declaration: PROCEDURE Compresstabs(CONST Source:String;VAR Dest:String;Tabsize:LONGINT);
PROCEDURE Compresstabs(CONST Source:AnsiString;VAR Dest:AnsiString;Tabsize:LONGINT);

Description: Compress tabs to spaces, with variable tabsize. This procedure doesn’t simply
compress Tabsize spaces to a hardtab, but implements tabbing like in an ordinary
texteditor like q.exe (or joe).

Doesn’t function well with hardtabs already in the input-string Source. In that
case, run ExpandTabs (69) first.

Source string is untouched. ’Normal’ Tabsize is 8, but specially in programmers
editors, it is often 2 or 4.

Errors: Assembler version not functional or buggy?

See also: ExpandTabs (69)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’12345678’ ;
CommaStr(P, ’.’) ;
Writeln (P) ; {wri t e s ’ 12 . 345 . 678 ’}

END.

9.1.31 ExpandTabs

Declaration: PROCEDURE ExpandTabs(CONST P : String;VAR P2:String;Tabsize:LONGINT);
PROCEDURE ExpandTabs(CONST P : AnsiString;VAR P2:AnsiString;Tabsize:LONGINT);

Description: Expands tabs in P to spaces, puts result in P2. (P untouched). Tabsize is the
number characters between two tabs.

69

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

This procedure implements real detabbing, not simply replacing a hardtab with
tabsize spaces. It doesn’t implement smart tabbing(place tabstops dependant on
text on a previous line).

This procedure is used to deal with tabs when reading textfiles. One ExpandTabs
after each stringread (ReadLn) from the file, and forget all problems with tabs. If
the identation doesn’t matter, you can just use ReplaceChar (60) (which would be
faster) and replace each tab with a space.

Errors: Assembler version not functional or buggy?

See also: CompressTabs (69) ReplaceChar (60)

For an example see CompressTabs (69)

9.1.32 Invert

Declaration: PROCEDURE Invert(VAR s :String);
PROCEDURE Invert(VAR s :AnsiString);

Description: Inverts the string in s. (’ABCD’ -¿ ’DCBA’). I don’t know what it’s good for,
except maybe palindrome checking, but I had it lying around somewhere.

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’12345678’ ;
Invert (P) ;
Writeln (P) ; {wri t e s ’ 87654321 ’}

END.

9.1.33 RPos

Declaration: FUNCTION RPos(CONST SubStr,S : String):LONGINT;
FUNCTION RPos(CONST SubStr,S : AnsiString):LONGINT;

Description: Inverts the string in s. (’ABCD’ -¿ ’DCBA’). I don’t know what it’s good for,
except maybe palindrome checking, but I had it lying around somewhere. When
SubStr contains only one char RCharPos (61) is called, which is faster.

Errors: None.

See also: RCharPos (61) NextRCharPos (62)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’This is a test. A test for RPos I mean.’ ;
Writeln (’Pos : ’ , Pos (’test’ , P)) ; {wri t e s 11 }
Writeln (’RPos : ’ , RPos(’test’ , P)) ; {wri t e s 19 }

END.

70

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

9.1.34 ReplaceLast

Declaration: FUNCTION ReplaceLast(CONST Sub1,Sub2: STRING;SS: STRING): STRING;
FUNCTION ReplaceLast(CONST Sub1,Sub2: AnsiString;SS: AnsiString): AnsiString;

Description: Replaces the last occurance of Sub1 in SS with Sub2 and returns the result. (The
procedures searches for Sub1 starting from the end of SS)

Errors: None.

See also: Replace (71) ReplaceChar (60)

Uses EPasStr ;

VAR P : String ;

BEGIN
P:=’Hello hello hello ’ ;
p:= ReplaceLast (’hello’ , ’HELLO’ , P) ;
Writeln (P) ;

END.

9.1.35 Replace

Declaration: FUNCTION Replace(CONST Sub1,Sub2: STRING;SS: STRING): STRING;
FUNCTION Replace(CONST Sub1,Sub2: AnsiString;SS: AnsiString): AnsiString;

Description: Replaces the first occurance of Sub1 in SS with Sub2 and returns the result. (The
procedures searches for Sub1 starting from the start of SS)

Errors: None.

See also: ReplaceLast (71) ReplaceChar (60)

For an example see ReplaceLast (71)

9.1.36 LeftStr

Declaration: FUNCTION LeftStr(CONST StrName: String; NumChars : Integer) : String;
FUNCTION LeftStr(CONST StrName: AnsiString; NumChars : LONGINT) : AnsiString;

Description: Old basic procedure Left$, provided for easy porting, some people prefer this
syntax above Copy (??). Copies the first NumChars characters from StrName.
(Rougly equivalent Result=Copy(S,1,NumChars))

Errors: None.

See also: MidStr (72) RightStr (72) Slice (72)

Uses EPasStr ;

VAR P, P2 : String ;

BEGIN

71

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

P:=’This is a test. A test for RPos I mean.’ ;
Writeln (’First 9 chars on the left : ’ , Le f tStr (P, 9)) ;
Writeln (’First 9 chars on the right : ’ , RightStr (P, 9)) ;
Writeln (’4 characters on position 11 : ’ , MidStr (P, 11 , 4)) ;
S l i c e (P2 , P, 11 , 4) ; {Faster than MidStr ,

no s t r in g co p y except the needed 4 chars }
Writeln (’Same with Slice (procedure form) : ’ , P2) ;

END.

9.1.37 RightStr

Declaration: FUNCTION RightStr(CONST StrName: String; NumChars : Integer) : String;
FUNCTION RightStr(CONST StrName: AnsiString; NumChars : LONGINT) :
AnsiString;

Description: Old basic procedure Right$, provided for easy porting, some people prefer this syn-
tax above Copy (??). Copies the last NumChars characters from StrName. (Rougly
equivalent Result=Copy(S,Length(S)+1-NumChars,NumChars))

Errors: None.

See also: MidStr (72) LeftStr (71) Slice (72)

For an example see LeftStr (71)

9.1.38 MidStr

Declaration: FUNCTION MidStr(CONST StrName: String; StartPos, NumChars : LONGINT)
: String;
FUNCTION MidStr(CONST StrName: AnsiString; StartPos, NumChars : LONGINT)
: AnsiString;

Description: Old basic procedure Mid$, provided for easy porting, some people prefer this syn-
tax above Copy (??). Returns the first NumChars characters starting on StartPos.
(exactly the same as Copy)

Errors: None.

See also: RightStr (72) LeftStr (71) Slice (72)

For an example see LeftStr (71)

9.1.39 Slice

Declaration: PROCEDURE Slice (VAR R: String; CONST S: String; P,L: LONGINT);
PROCEDURE Slice (VAR R: AnsiString; CONST S: AnsiString; P,L: LONGINT);

Description: Modula-2 version of Copy (??). Equivalent to R:= Copy (??)(S,P,L); Also faster
than Slice, since it has a procedure-form instead of a function. (A function requires
an extra copy of the string to

Errors: None.

See also: RightStr (72) LeftStr (71) MidStr (72)

For an example see LeftStr (71)

72

The EPasStr unit. 9.1. FUNCTIONS AND PROCEDURES.

9.1.40 Match

Declaration: FUNCTION Match(CONST source, pattern: String): Boolean;
FUNCTION Match(CONST source, pattern: AnsiString): Boolean;

Description: String matching procedure (capable of * and ?, so things like ncurses*.source.*.rpm
matches ncurses-3.0.source.i386.rpm) Speed seems satisfactory despite recursion.

Errors: Reads sometimes byte at source[length(source)+1], same for pattern. Ansistring
version untested.

Uses EPasStr ;

PROCEDURE Quicktest (S1 , S2 : String) ;

BEGIN
Write(S1 , ’ : ’ , S2 , ’ ’) ;
IF Match(S2 , S1) THEN
Write(’ok’)

ELSE
Write(’Failure’) ;

Writeln ;
END;

BEGIN
Quicktest (’∗ll’ , ’1stpat.testfile.ll’) ;
Quicktest (’∗testf ∗.ll’ , ’1stpat.testfile.ll’) ;
Quicktest (’∗txestf ∗.ll’ , ’1stpat.testfile.ll’) ;
Quicktest (’∗.test∗.ll’ , ’1stpat.testfile.ll’) ;

END.

73

Chapter 10

The EWindow unit.

This chapter describes the EWindow unit, which works with both FPC Pascal (Go32V2
and Linux tested) and Borland Pascal 7.0 (you’ll need the libsrc/bpgo32.pas unit).
It will probably work on TP 6.0 too, but this hasn’t been tested.

10.1 unit EWindow

One of the most interesting standard units of the Modula2 RTL (also a Wirth lan-
guage like Pascal) is module Window. It implements multithreaded textwindowing.
So this module does NOT exist in the modula2 version of XTDLIB, it was written
from scratch while peeking at the several Modula2 implementations.

10.1.1 Additional remarks, bugs and principles

This module emulates the Modula2 counterpart A BIT. The module is still under
development, but the raw core stands, the rest is changing window colors, imple-
menting shades etc, moving etc.

Opposed to the Modula2(TopSpeeds, not the ISO) version, this module is

• NOT multithreading

• EWindow doesn’t handle it’s own Crt like M2-Window, but is build on top of
FPC-Pascal’s Crt for normal operations, and uses direct-screenwrites to up-
date the screen after major (window opening/closing/moving/hiding) changes.

The Linux version uses GotoXY, TextAttr and Textcolor and Write to update
the screen, which is a lot slower, but not a problem with computer speeds equal
or above 66 MHz.

As a result of this

– It’s impossible to implement wordwrapping via normal procedure writeln
(yet) However a separate procedure WrapWrite (85) implements wrap-
ping in a window.

– Writing to hidden or not activated windows is not possible. The only
window that can be written is the one on top. Each window (including
the background, the (FullScreen (80)-window) can be put on top how-
ever. A separate routine could be made for writing to hidden/obscured

74

The EWindow unit. 10.1. UNIT EWINDOW

windows, but I haven’t thought really well about how to implement that
yet.

Other comments:

• Unportable as it is, unless your OS supports some kind of virtual screen like
Dos’. I hope to create a Linux version based on Ncurses sometime, but it
will be almost totally different internally. In the mean time, I implemented
a Linux version without Ncurses, which turned out better (read faster) than
I expected. It’s definitely faster than textwindow environments as seen when
you use make menuconfig, since my unit doesn’t redraw the entire screen after
each write (an huge part of that credit goes to the Linux Crt implementor
btw, Great job!).

I’m currently asking questions about OS/2 support, and it seems to be possi-
ble, even easy, however installing OS/2 (to create a testenvironment) is a bit
problematic.

• A lot of the non-basic functions (frame-color changes, frameon/off, snapshots
without opening a window etc) aren’t implemented yet. Some basic checks
are now implemented, but the errorhandler is simply an halt Error Handling
(78)

The basic routines(Open,Use,Close,Clone,Hide,Unhide) work however.

• Screen redrawal has greatly improved. The algoritm isn’t perfect yet see see
Ewindows Internal (77) but the unoptimalities are small. I’m thinking about
a small optimalisation to reduce flickering of the screen with a high (¿50)
number of windows under dos.

Advantages compared to Modula2 version, and to an average equivalent from SWAG
(the latter marked with PAS)

• Commandline use (popup window, do your thing in that window, popoff win-
dow, screen seems untouched) is still possible contrary to the M2-version of
EWindow which cleared the screen on start-up.

not for linux

• PAS FullScreen (80) is just another window, fully compatible with any other
window (the same operations can be used), and you can have more than
one.(The default FullScreen is no different then a window you open, except
that under Dos the contents of the screen when starting the program are
copied to this particular window)

If you switch to FullScreen (Use(FullScreen)), or another big (Width*Height)
window before a dosshell (e.g. ARJ), you can capture the last 25 lines of
output, without redirection. The screen below all other screens is empty
black by default.

I’m not sure if this works under Linux, but almost everything is pipable under
Linux, so this isn’t a big problem

• Little size dependant. If the detection (screensegment, Width and height) is
ok, everything should work, the actual code is compatible.

• PAS ”Unlimited” windows, no arrays with data. I let Windtest open 500
windows, no problem at all, except for some flickering when you run without
delays. (You can test that yourself, simply increase the RanWinNr constant
in windtest.

75

The EWindow unit. 10.1. UNIT EWINDOW

• PAS Full Crt compability. GotoXY in a Window, TextColor in a window, Cur-
sors and attributes are saved when switching/moving windows. Overlapping
windows are no problem. (Linux version doesn’t save cursorstate)

• PAS Handle based (sometimes called ”OOP without OOP”). Mainmodule
has to regard virtually no details. The unit takes care of almost everything,
the mainmodule only supplies the parameters, and the module does ALL the
work, see relative simplicity of WindTest.

• PAS Much safer, because all details are hidden. In M2 I let user move windows
on the screen to the place where THEY want them. Simply with Scroll-lock
and cursorkeys. This requires about 20 lines code in the mainmodule.

• PAS Rather OS-independant, dependancies in 1 1/2 procedure, and a few lines
of less important conditional code (cursorstates, screendimension detection) in
other procedures. Also the strict interface-implementation separation makes
applications using this unit a bit OS-independant, if you have EWindow for
a lot of OS’es

10.1.2 Project status

• The old Runtime-204 bug has been fixed, there are no major bugs as far as I
know.

• A very simple errorhandling system has been setup to detect corrupted win-
dows and weird coordinates

The system isn’t waterproof, and can be turned of with a conditional. If you
however use good coordinates, everything works. This system is temporarily
I think. If you have suggestions how to handle this kind of errors (create
runtime error, do nothing on error(but try to fix data), maybe even signals),
let me know.

• FPC DOS/Go32v2 When you use crazy numbers of windows(¿50,100), and open
and close them without doing much (which delays), the screen can flicker a
bit. I tried to reduce this by buffering output on the stack, but that wasn’t
so successful. Anyway, the routine which caused the flicker doesn’t reflect a
real application anyway, it is more a benchmarking/testing routine.

Dos version opens and closes 500 windows in 5 seconds on a Cyrix P166+

• FPC DOS/Go32v1 Status unknown. I use RTL procedures Go32.DosMemGet
and -Put, but these do exist under Go32V1. Another incompability might be
the assembler procedures (which set/get the cursorsize) for Dos in ELib. If
you test under Go32V1, let me know.

• Borland Pascal DOS (no bugs, except that FPC-Crt standard issues high-
video, and Bp-Crt not, which results in blinking attributes.)

I don’t test BP as much as the other OSes, so maybe the newest additions
may cause some problems.

• FPC Linux Writing to bottom right character (coordinates Width,Height)
scrolls the screen and messes up screen. Haven’t found a working workaround
yet.

Linux version seems fast enough now, but I’m running on a Cyrix P166+

The unit is more than usable under Linux, and even faster than make menu-
config (textwindowed kernel-configuration, see your kernel source). Make

76

The EWindow unit. 10.1. UNIT EWINDOW

Menuconfig updates the screen to often. The Crt of the FPC/Linux is very
good, and since Ewindow is based on it, it inherites those advantages.

I haven’t tried running a program that uses EWindow via a telnet connection,
since my second computer is offline.

The release 0.99.8 requires Crt.pp to be patched (See devel directory, only
change: virtual screen moved from implementation to interface), newer snap-
shots (0.99.9 since mid-october) won’t have this problem.

• Other OS’es not implemented yet, I just wrote a letter to Dan for OS/2 help,
and got some response. At least now I’m sure it’s possible, and not extremely
much work. The OS/2 port will depend on me be able to test under OS/2.
IOW, do I get OS/2 installed? :-)

10.1.3 EWindow internal

I gave the idea of speeding up module EWindow a bit thought, looked at the
TopSpeed RTL, and wondered how they solved it. The trick seems to be to build the
windowlist (a linked list of the records with window-information, of type WinType
(79) from top to bottom instead of bottom to top, but I can’t figure out exactly how
they do it (pretty complicated code, multithreading and writes to hidden windows)

My old approach when redrawing a screen is to

• Clear the screen, just in case the windows don’t cover the entire screen

• Write the ”lowest” window.

• Write the but lowest window

• etc etc until the top window

The above method is optimized by buffering the data to be written on the stack
(instead of directly writing to the videomemory), and by only rewriting the rectangle
that needs to be updated.

The new approach (since 0.10 or so. On a per line basis, and only the part that has
to be redrawn, redrawscreen(1,1,Width,Depth) rewrites the entire screen. This is
the general idea, some details (like which tests should be greater AND equal instead
of only greater) aren’t described here) :

• Temporary values, TX1:=X1; TX2:=X2; where X1-X2 is the range of the
current (partial) line we are rewriting

• Get a (first : top) window. 5 Cases :

– window.X2 smaller than TX1. Do nothing, that window not in current
range

– window.X1 bigger than TX2. Do nothing, that window not in current
range

– Window.X1 smaller than TX1 TX1 < Window.X2 < TX2 Rewrite TX1..Window.X2
from buffer then Tx1:=Window.X2 (since original Tx1 ..Window.X2 is
now in it’s final state)

– Window.X2 bigger than TX2 TX1 > Window.X1 > TX2 Rewrite Win-
dow.X1..TX2 from buffer then Tx2:=Window.X1

77

The EWindow unit. 10.1. UNIT EWINDOW

– Both Window.X1 and Window.X2 lie in the TX1 and TX2 interval.
Don’t know how to solve this yet. Redraw Window.X1..Window.X2 and
then recursively redraw X1..Window.X1 and Window.X2..X2? I can’t
figure out how TopSpeed solves it, but I don’t see recursion.

• IF TX1 <> TX2 and Window.Next <> NIL take nextwindow and repeat step
2

(Added later) I see know how the TopSpeed guys do it. It’s not recursive, but not
really with less overhead. They kind of use a bi-section system. But I’m not sure
what TopSpeeds system will do in this case:

| yyyyyyyy xxxxxxxxx zzzzzzzzz |

(legenda:)

• the region between both pipesigns is to be rewritten.

• the x window is more on top then y, and is written first.

• after writing the x window the routine saves the position of the most right x
in a variable NextX, and the distance NextX to last pipesign in NextLen

• Then in reprograms the coordinates to do the area left of x.

• y is written, distance right y and distance right-y - left x is stored in NextX
and NextLen, and THAT’s my problem. At that moment it wipes out the
variables which have to govern writing the region right of X.

This is a rare case, and the TopSpeed programmers only redraw parts of windows
at once, and check for a lot of operations when redrawing (they don’t redraw the
screen using the same procedure). Like Hide. Hide uses a specialised procedure
which draws anything below the window to be hidden.

On the other hand, the TopSpeed RTL is(was) to good to allow such bugs. I used
this module for years, and never saw one flaw. What am I missing! At least I see
why such complicated textwindowing units aren’t included in SWAG :-)

I still will try to implement above algoritm, since it’s the best, but for inbetween
I implemented another system, which is much faster than the old one, but a bit
slower than the new algoritm, but simpler, mainly because it doesn’t require the
windowlist (and with that a lot procedures more) to be changed.

The current implementation also only redraw the parts of the screen that have
changed, but writes bottom up, which is slower because all windows in the range
which is rewritten, are redrawn, instead of only the top ones. Under Dos this is no
problem. Under Linux, with it’s terminal driven screen it is, so I changed the unit
to do the building up of the screen in (fast) memory, not directly on the screen,
which is a lot faster.

Maybe it’s slow on 386/33’s etc, but above 486 DX2/66 speed won’t be a problem.

10.1.4 Error handling

If the conditional WindowCheck is defined, some errorhandling is implemented, by
using Thomas Schatzl ErrHndler unit. (the same he uses for DPMI)

78

The EWindow unit. 10.2. TYPES

The unit checks for some errorconditions like corrupted WinTypes, bad coordinates
(X1 bigger than X2), and reports error to the errorhandler.

The default errorhandler cleans the screen, turns of Window()’ed mode and puts
an oneliner error message on the screen.

10.2 Types

10.2.1 Styles

Declaration: (Style definitions are not shown because it contains a lot of high ascii,
and will get mangled)

Description: Styles are small strings with all characters needed to make frames in textwindows.
The exact definition may change, so please use one of the predefined styles if you
can.

See also: WinDef (79)

10.2.2 Coordinates

Declaration: AbsCoord= INTEGER; RelCoord= INTEGER;

Description: As you can see the above definitions aren’t very complex, their main purpose is
to let clearly see in the definition what are coordinates for the entire screen (e.g.
window-positions), and which ones are positions IN windows. (e.g. cursorposition).

See also: WinMove (83), Change (82) WinDef (79)

10.2.3 WinType

Declaration: WinType= ŴinDataRec

Description: THE main type of this unit. A WinType is a type which describes a certain win-
dow, and is used to reference it. You should never directly manipulate a WinType
parameter, or the record it points to (WinDataRec). Use EWindow procedures to
achieve what you want.

See also: WinOpen (80), WinClose (81), FullScreen (80)

10.2.4 WinDef

Declaration: WinDef = RECORD
X1,Y1,
X2,Y2 : AbsCoord; Coordinates of Window to create
Foreground : BYTE; Initial colors of window
Background : BYTE;
FrameOn : BOOLEAN; Should a frame be created for the window?
FrameDef : PChar; Bordertype, POINTER TO a \seetypl{Style}{Styles}
FrameFore : BYTE; Colors of the frame
FrameBack : BYTE;
END;

Description: A WinDef record contains all data needed to open a new window.

See also: WinOpen (80)

79

The EWindow unit. 10.3. VARIABLES

10.3 Variables

10.3.1 Height and Width

Declaration: VAR Width,
Height : INTEGER;

Description: Height and Width are the dimensions of the textmode screen. Under the Go32V2
memorymodel the initial values are copied from BIOSData area, and under Linux
from (new) Linux Crt’s variables ScreenHeight and ScreenWidth.

New, because the old Linux Crt (before nov 1998) had no support for other dimen-
sions.

See also: None, but used by most procedures that have coordinates as parameter.

10.3.2 FullScreen

Declaration: VAR FullScreen : WinType (79);

Description: When EWindow starts up, the entire textscreen is saved (Go32V2 only) to the
(frameless) FullScreen window. Under Linux the FullScreen inits as empty.

The Fullscreen is an ordinary window, just like ones you open yourself with WinOpen
(80). You can hide it, clone it etc. You can use a fullscreen to switch to (Use (81))
before an dos-shell and capture the last 25 lines of output.

Most times you use it as background, or to restore the dos screen after your appli-
cation is finished, or clone (84) it and use it for both:-)

10.4 Functions and procedures

10.4.1 WinOpen

Declaration: FUNCTION WinOpen(WD : WinDef (79)): WinType (79);

Description: Opens a window described by a WinDef (79), and puts it on top.

The returnvalue is used by the unit for further operations on that window. You’ll
have to save it, and pass it to almost every other EWindow procedure.

Note: FullScreen (80) window is already WinOpen’ed at startup

Errors: None.

See also: WinClose (81), WinClone (84), Use (81)

Uses EWindow, Crt ;

CONST WD: WinDef=(X1: 10 ; Y1: 13 ; X2: 45 ; Y2: 25 ; Foreground : White ; Background : Black ;
Frameon :TRUE; FrameDef : Sty le1 ; FrameFore : Yellow ; FrameBack : Blue) ;

VAR Win : WinType ;

BEGIN
Win:=EWindow. WinOpen(WD) ; {Open the window}

80

The EWindow unit. 10.4. FUNCTIONS AND PROCEDURES

SetT i t l e (Win, ’Window 1’) ; {Set the t i t l e on t h i s framewindow (FRAMEON=TRUE)}
Readln ;
EWindow. WinClose (Win) ; {Close the @££%@ Window}

END.

10.4.2 WinClose

Declaration: PROCEDURE WinClose(VAR W: WinType (79));

Description: Closes the Window associated with the WinType. NIL is assigned to the WinType
parameter.

Note: You can WinClose the FullScreen (80) window if you wish, but space on the
screen not covered by a window will be empty black.

Errors: None.

See also: WinOpen (80), Hide (82)

See WinOpen for an example.

10.4.3 SetTitle

Declaration: PROCEDURE SetTitle(W: WinType (79);Title:PChar);

Description: Sets the title of the window, only use this on Frame-windows.(otherwise it would
do nothing) The title is showed in the upper frame-line (centered).

Errors: None.

See also: Oops. No really related procedure I think.

See WinOpen (80) for an example.

10.4.4 Use

Declaration: PROCEDURE Use(VAR W: WinType (79));

Description: Puts the window on top, so that it can be written. Window must be WinOpen (80)
first. The USEd window is the window which will be written by standard output
(Write(Ln)).

Errors: None.

See also: WinOpen (80), WinClone (84), UnHide (82)

Uses EWindow, Crt ;

CONST WD: WinDef=(X1: 10 ; Y1: 13 ; X2: 45 ; Y2: 25 ; Foreground : White ; Background : Black ;
Frameon :TRUE; FrameDef : Sty le1 ; FrameFore : Yellow ; FrameBack : Blue) ;

CONST WD2: WinDef=(X1: 12 ; Y1: 15 ; X2: 48 ; Y2: 23 ; Foreground : yel low ; Background : white ;
Frameon :TRUE; FrameDef : Sty le2 ; FrameFore : Yellow ; FrameBack : Blue) ;

VAR Win, Win2 : WinType ;

81

The EWindow unit. 10.4. FUNCTIONS AND PROCEDURES

BEGIN
Win:=EWindow. WinOpen(WD) ; {Open the window}
Win2:=Ewindow . WinOpen(WD2) ; {opens a second window , which i s on top }
Use (Win) ; {Puts window 1 back on top , so i t can be wr i t t en }
EWindow. WinClose (Win2) ; {You don ’ t have to use a window to c l o s e i t }
EWindow. WinClose (Win) ; {Close the other Window}

END.

10.4.5 Hide

Declaration: PROCEDURE Hide(W: WinType (79));

Description: Hides the window (makes it invisible) Makes the next window in line on top, but
that is not 100after a Hide command.

Errors: None.

See also: WinOpen (80), WinClone (84), UnHide (82) WinClose (81)

Uses EWindow, Crt ;

CONST WD: WinDef=(X1: 10 ; Y1: 13 ; X2: 45 ; Y2: 25 ; Foreground : White ; Background : Black ;
Frameon :TRUE; FrameDef : Sty le1 ; FrameFore : Yellow ; FrameBack : Blue) ;

VAR Win : WinType ;
BEGIN

Win:=EWindow. WinOpen(WD) ; {Open the window}
Hide (Win) ; {makes Window i n v i s i b l e }
ReadLn;
UnHide (Win) ; {Makes Window v i s i b l e again }
Readln ;
EWindow. WinClose (Win) ; {Close the @££%@ Window}

END.

10.4.6 UnHide

Declaration: PROCEDURE UnHide(W: WinType (79));

Description: Unhides the window (makes it visible again). The procedure doesn’t put the
window on top. You should issue a Use (81) if you want to write to the screen.

Errors: None.

See also: WinOpen (80), WinClone (84), Hide (82) WinClose (81)

See Hide for an example.

10.4.7 Change

Declaration: PROCEDURE Change(W: WinType (79); OX1,OY1,OX2,OY2: AbsCoord (79));

82

The EWindow unit. 10.4. FUNCTIONS AND PROCEDURES

Description: Change changes the dimensions and/or position of window W to top left corner
(OX1,OY1) and bottom right corner (OX2,OY2).

Only contents which fit in new window are copied, if the new window is bigger, the
rest is filled with spaces with the current attributes for that window. If you resize
to a smaller dimension, the surplus is lost

Errors: None.

See also: WinMove (83)

Uses EWindow, Crt ;

CONST WD: WinDef=(X1: 10 ; Y1: 13 ; X2: 45 ; Y2: 25 ; Foreground : White ; Background : Black ;
Frameon :TRUE; FrameDef : Sty le1 ; FrameFore : Yellow ; FrameBack : Blue) ;

VAR Win : WinType ;

BEGIN
Win:=EWindow. WinOpen(WD) ; {Open the window}
ReadLn;
Change (Win, 1 , 10 , 20 , 20) ; {Change dimensions to (1 , 10) (20 , 20)}
ReadLn;
EWindow. WinClose (Win) ; {Close the @££%@ Window}

END.

10.4.8 WinMove

Declaration: PROCEDURE WinMove(W: WinType (79) ; OX1,OY1: AbsCoord (79));<p>

Description: WinMove move a window so that top left of the window is on position (OX1,OY1)¡p¿
WinMove is faster than Change (82) cause it doesn’t resizes.

Errors: None.

See also: Change (82)

Uses EWindow, Crt ;

CONST WD: WinDef=(X1: 10 ; Y1: 13 ; X2: 45 ; Y2: 25 ; Foreground : White ; Background : Black ;
Frameon :TRUE; FrameDef : Sty le1 ; FrameFore : Yellow ; FrameBack : Blue) ;

VAR Win : WinType ;

BEGIN
Win:=EWindow. WinOpen(WD) ; {Open the window}
ReadLn;
WinMove(Win, 1 , 10) ; {Change dimensions to (1 , 10) (20 , 20)}
ReadLn;
EWindow. WinClose (Win) ; {Close the @££%@ Window}

END.

10.4.9 Clear

Declaration: PROCEDURE Clear(W: WinType (79));

83

The EWindow unit. 10.4. FUNCTIONS AND PROCEDURES

Description: Clears a window with the proper attributes, and performs a GotoXY(1,1);
Crt.ClrScr may seem work right in Dosmode, but maybe it won’t on other platforms.
Clear is also faster, and allows you to clear a window which is not on top.

Errors: None.

See also: Can’t think of a reasonable link here.

Uses EWindow, Crt ;

CONST WD: WinDef=(X1: 10 ; Y1: 13 ; X2: 45 ; Y2: 25 ; Foreground : White ; Background : Black ;
Frameon :TRUE; FrameDef : Sty le1 ; FrameFore : Yellow ; FrameBack : Blue) ;

VAR Win : WinType ;

BEGIN
Win:=EWindow. WinOpen(WD) ; {Open the window}
Writeln (’text’) ;
ReadLn;
Clear (Win) ; {Clear the window}
ReadLn;
EWindow. WinClose (Win) ; {Close the @££%@ Window}

END.

10.4.10 WinClone

Declaration: FUNCTION WinClone(W: WinType (79)): WinType (79);

Description: Clone window W, (creates a full copy, doesn’t just return a pointer to the same
window) hides de clone and return a WinType to the cloned window.
Clones can simply get closed with WinClose (81)

Errors: None.

See also: WinOpen (80) WinClose (81)

Uses EWindow, Crt ;

CONST WD: WinDef=(X1: 10 ; Y1: 13 ; X2: 45 ; Y2: 25 ; Foreground : White ; Background : Black ;
Frameon :TRUE; FrameDef : Sty le1 ; FrameFore : Yellow ; FrameBack : Blue) ;

VAR Win, Win2 : WinType ;

BEGIN
Win:=EWindow. WinOpen(WD) ; {Open the window}
ReadLn;
Win2:=WinClone (Win) ; {Clear the window}
Writeln (’text’) ; {Write t e x t to the o r i g i n a l window}
WinMove(Win2 , 10 , 10) ; {Move Win2 to another p o s i t i o n }
Unhide (Win2) ; {Unhide i t }
Use (Win2) ; {Put on top and r e d i r e c t output to i t }
writeln (’Not the same text’) ;
ReadLn;
EWindow. WinClose (Win) ; {Close the @££%@ Window}
EWindow. WinClose (Win2) ; {Close the @££%@ Window}

END.

84

The EWindow unit. 10.4. FUNCTIONS AND PROCEDURES

10.4.11 WrapWrite

Declaration: PROCEDURE WrapWrite(CONST Towrite:String);
PROCEDURE WrapWriteLn(CONST Towrite:String);

Description: Writes string Towrite to the current Window, and tries to wrap the text in it.
WrapWriteLn adds a linefeed.

Errors: None.

See also: none.

Uses EWindow, Crt ;

CONST WD: WinDef=(X1: 10 ; Y1: 13 ; X2: 45 ; Y2: 25 ; Foreground : White ; Background : Black ;
Frameon :TRUE; FrameDef : Sty le1 ; FrameFore : Yellow ; FrameBack : Blue) ;

VAR Win : WinType ;

BEGIN
Win:=EWindow. WinOpen(WD) ; {Open the window}
WrapWriteln (’A longer text than which will fit into this window on one line I hope’) ;
ReadLn;
EWindow. WinClose (Win) ; {Close the @££%@ Window}

END.

85

Chapter 11

Farmem Unit

This is the documentation of the Farmem unit.

The farmem unit is a small unit which provides access to other memory segments
(then your own programs) by defining a series classes with properties which resemble
an array.

Two basic classes exist,

• tdosmem to access the dosmemory, which is a special case, because under FPC
(Go32V2) %fs always points to the dos-segment.

• tfarmem to access a custom segment.

Both basic types come each in three flavours, a array of byte, array of word and
array of longint approach, conveniently denoted with suffix b,w and l.

11.1 Class defintions

11.1.1 tdosmemb

Declaration: tdosmemb = class
procedure writemem(ofs : DWord; data : byte);
function readmem(ofs : DWord) : byte;
property memarray[ofs : DWord] : byte read readmem write writemem; default;

end;

Description: Basic class to access a different (array of byte typed) segment via register %fs,
which points to realmode dos memory under FPC.

See also: tdosmemw (86) tdosmeml (87) tfarmemb (87) tfarmemw (87) tfarmeml (88)

11.1.2 tdosmemw

Declaration: tdosmemw = class
procedure writemem(ofs : DWord; data : Word);
function readmem(ofs : DWord) : Word;
property memarray[ofs : DWord] : Word read readmem write writemem; default;

end;

86

Farmem Unit 11.1. CLASS DEFINTIONS

Description: Basic class to access a different (array of word typed) segment via register %fs,
which points to realmode dos memory under FPC.

See also: tdosmemb (86) tdosmeml (87) tfarmemb (87) tfarmemw (87) tfarmeml (88)

11.1.3 tdosmeml

Declaration: tdosmeml = class
procedure writemem(ofs : DWord; data : Longint);
function readmem(ofs : DWord) : Longint;
property memarray[ofs : DWord] : Longint read readmem write writemem; default;

end;

Description: Basic class to access a different (array of longint typed) segment via register %fs,
which points to realmode dos memory under FPC.

See also: tdosmemb (86) tdosmemw (86) tfarmemb (87) tfarmemw (87) tfarmeml (88)

11.1.4 tfarmemb

Declaration: tfarmemb = class
procedure writemem(s : Word; ofs : DWord; data : byte);
function readmem(s : Word; ofs : DWord) : byte;
property memarray[s : Word; ofs : DWord] : byte read readmem write writemem; default;

end;

Description: Basic class to access a different (array of byte typed) segment via seg s.

The segment is loaded to register %gs, and register

The segment probably wasn’t implemented as a variable (in the class definition)
because FarMem is implemented in assembler, and FPC’s calling conventions of
objects have changed a lot lately

See also: tdosmemb (86) tdosmemw (86) tdosmeml (87) tfarmemw (87) tfarmeml (88)

11.1.5 tfarmemw

Declaration: tfarmemw = class
procedure writemem(s : Word; ofs : DWord; data : word);
function readmem(s : Word; ofs : DWord) : word;
property memarray[s : Word; ofs : DWord] : word read readmem write writemem; default;

end;

Description: Basic class to access a different (array of word typed) segment via seg s.

The segment is loaded to register %gs, and register

The segment probably wasn’t implemented as a variable (in the class definition)
because FarMem is implemented in assembler, and FPC’s calling conventions of
objects have changed a lot lately

See also: tdosmemb (86) tdosmemw (86) tdosmeml (87) tfarmemb (87) tfarmeml (88)

87

Farmem Unit 11.2. PREDEFINED VARIABLES

11.1.6 tfarmeml

Declaration: tfarmeml = class
procedure writemem(s : Word; ofs : DWord; data : longint);
function readmem(s : Word; ofs : DWord) : longint;
property memarray[s : Word; ofs : DWord] : longint read readmem write writemem; default;

end;

Description: Basic class to access a different (array of longint typed) segment via seg s.

The segment is loaded to register %gs, and register

The segment probably wasn’t implemented as a variable (in the class definition)
because FarMem is implemented in assembler, and FPC’s calling conventions of
objects have changed a lot lately

See also: tdosmemb (86) tdosmemw (86) tdosmeml (87) tfarmemb (87) tfarmemw (87)

11.2 Predefined variables

11.2.1 tdosmem based variables

Declaration: VAR dmemb : tdosmemb;
dmemw : tdosmemw;
dmeml, dmemd : tdosmeml;

Description: These variables can be used to access dos-memory, don’t forget to initialise the
classes first.

See also: tfarmem based variables (88) tdosmemb (86) tdosmemw (86) tdosmeml (87)

11.2.2 tfarmem based variables

Declaration: VAR dmemb : tfarmemb;
dmemw : tfarmemw;
dmeml, dmemd : tfarmeml;

Description: These variables can be used to access a different segment, don’t forget to initialise
the classes first.

Also don’t forget that %gs isn’t saved, which can be a problem with some Linear
Frame Buffer VESA units.

See also: tdosmem based variables (88) tfarmemb (87) tfarmemw (87) tfarmeml (88)

88

Chapter 12

The Memory Unit

written by Thomas Schatzl

12.1 FEATURES

• Fast memory transfers by using the FPU, speed increase of up to 100on Intel
Pentium systems

• Fast memory set procedures

• Replaces the go32 move* and fillchar* functions with high speed assembler
procedures completely

• 16 boolean operations between two memory regions or memory and a single
value possible

• Boolean operations match Mircosoft ROP order

• Automatically uses MMX extensions if available

• Writes information to stderr if DEBUG is defind

12.2 BACKGROUND

This unit was done because I need fast memory copy routines and boolean bit oper-
ation for a greater project of mine, a graphics library which uses the 2D acceleration
features of most graphics chips nowadays. Some procedures are needed to support
all functions (bitblt, HW memory copies..) in software for chipsets which don’t
support HW acceleration or miss one or another feature or are simply older.

On the other hand I wanted to know what comes out if you take advantage of
modern chipsets available instruction sets. And it seems it was worth the effort,
because there’s a speed gain of up to 400instructions to copy memory, or using
Intel’s MMX extensions for boolean operations on my P200 MMX.

12.3 SYSTEM REQUIREMENTS

This unit requires an IBM PC or compatible with an 80386 or higher processor.

89

The Memory Unit 12.4. PROGRAMMING LANGUAGE

Table 12.1: Mem Op Operation modes

Enumeration name Boolean bit operation result Description Note
MEM CLEAR dst = 0 zero out destination
MEM NOT DSTORSRC dst = not (dst or src)
MEM DST AND NOTSRC dst = dst and (not src)
MEM NOTSRC dst = not src invert source and copy
MEM SRC AND NOTDST dst = src and (not dst)
MEM NOTDST dst = not dst invert destination
MEM DST XOR SRC dst = dst xor src
MEM NOT DSTANDSRC dst = not (dst and src)
MEM DST AND SRC dst = dst and src
MEM NOT DSTXORSRC dst = not (dst xor src)
MEM DST dst = dst does nothing
MEM DST OR NOTSRC dst = dst or (not src)
MEM SRC dst = src copy / fill
MEM NOTDST OR SRC dst = (not dst) or src
MEM DST OR SRC dst = dst or src
MEM SET dst = 1 set destination

12.4 PROGRAMMING LANGUAGE

This Memory unit can be compiled with FPC Pascal (32-bit protected mode free-
ware DOS compiler) and a GNU assembler version of 2.9.1 or higher.

Supports following extenders:

• GO32V1

• GO32V2

• PMODE D/J

Needs the following switches enabled:

• none

12.5 Types of the memory unit

12.5.1 Mem Op (enumeration)

Describes the 16 possible boolean operations between two values

Description

This enumeration describes the 16 possible boolean operations between two bits (in
this case src and dst) using the and, or, xor and not operators.

Table table (12.1) lists the possible operation modes.

The result is archieved by combining src and dst values bit by bit.

Example 1:

src = %10001
dst = %01011

90

The Memory Unit 12.6. MEMORY FUNCTIONS

Table 12.2: Four different basic operations

AND OR XOR NOT
A B result A B result A B result
0 0 0 0 0 0 0 0 0 A result
1 0 0 1 0 1 1 0 1 1 0
0 1 0 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

selected operation : MEM DST OR NOTSRC

dst = dst or (not src)
= %01011 or (not %10001)
= %01011 or %01111
= %01111

Example 2:

src = %10001
dst = %01001

selected operation : MEM CLEAR

dst = 0
= %00000

In this case the src and dst memory contents are not important at all.

The next table shows the results of the four different basic operations according to
given expressions A and B.

Example:

A = %10100
B = %01001
operation : XOR
result = %10100 xor %01001 = %10101

12.5.2 DWORD

This type defines a 32 bit unsigned integer.

type DWord = Cardinal;

12.6 Memory Functions

12.6.1 memcpy

Declaration: PROCEDURE memcpy (var src, dst; size : DWord);

Description: Copies size bytes between src and dst. No range checking is performed and it can
handle overlapping memory areas correclty. A speed gain of up to 100floating point
registers for copying.

See also: seg memcpy (92)

91

The Memory Unit 12.6. MEMORY FUNCTIONS

12.6.2 memset

Declaration: procedure memsetB (var x; size : DWord; value : Byte);
procedure memsetW (var x; size : DWord; value : Word);
procedure memsetD (var x; size : DWord; value : DWord);

Description: Sets size bytes beginning from x to the value value. No range checking is performed,
so the use of the sizeof() operator is recommened. Uses 64 bit FPU registers for
fast memory fill. The difference between the three routines is the size of the value
argument. The one fills the memory with a Byte value, the other with a Word value
and the last with a DWord value.

See also: seg memsetB (93) seg memsetW (93) seg memsetD (93)

12.6.3 memchange

Declaration: procedure memchange (var src, dst; size : DWord; op : Mem Op);

Description: Does a boolean operation between two memory areas

Combines size bytes of src and dst via the boolean operation op and stores the
result in dst. The boolean operation is applied on a bit to bit basis. Automatically
uses MMX extensions if available for speed enhancement. No range checking is
performed, so it is recommened to use the sizeof() operator. When the src and dst
memory area overlap the result is undefined.

See also: Mem Op (12.5.1) seg memchange (93)

12.6.4 memchangeValue

Declaration: procedure memchangeValueB (var x; size : DWord; value : Byte; op : Mem Op);
procedure memchangeValueW (var x; size : DWord; value : Word; op : Mem Op);
procedure memchangeValueD (var x; size : DWord; value : DWord; op :
Mem Op);

Description: Combines size bytes of value and x via the selected boolean operation in op and
stores the result in x. Automatically uses MMX extensions when available. No
range checking is performed, so the use of the sizeof() operator is recommened. The
difference between the three procedures is the size of the value, either Byte, Word
or DWord.

See also: Mem Op (12.5.1) seg memchangeValueB (93) seg memchangeValueW (93) seg memchangeValueD
(93)

12.6.5 seg memcpy

Declaration: procedure seg memcpy (srcsel : Word; srcofs : DWord; dstsel : Word;
dstofs: Dword; size : DWord);

Description: Copies bytes from src to dst across selector boundaries.

This procedure does the same as memcpy, except that the src and dst may reside
in different memory segments or outside the DS selector range.

See also: memcpy (91)

92

The Memory Unit 12.6. MEMORY FUNCTIONS

12.6.6 seg memset

Declaration: procedure seg memsetB (sel : Word; ofs : DWord; size : DWord; value
: Byte);
procedure seg memsetW (sel : Word; ofs : DWord; size : DWord; value
: Word);
procedure seg memsetD (sel : Word; ofs : DWord; size : DWord; value
: DWord);

Description: Sets size bytes across selector boundaries.

This procedure does the same as memset*, except that the memory may reside
outside the DS selector range.

See also: memsetB (92) memsetW (92) memsetD (92)

z

12.6.7 seg memchange

Declaration: procedure seg memchange (srcsel : Word; srcofs : DWord; dstsel : Word;
dstofs : DWord; size : DWord);

Description: Combines two memory areas by a boolean operation which aren’t in the DS selector
range

This procedure does the same as memchange, except that the memory areas may
reside outside the DS selector range or be in different memory areas.

See also: Mem Op (12.5.1) memchange (92)

12.6.8 seg memchangeValue

Declaration: procedure seg memchangeValueB (sel : Word; ofs : DWord; size : DWord;
value: Byte; op : Mem Op);
procedure seg memchangeValueW (sel : Word; ofs : DWord; size : DWord;
value: Word; op : Mem Op);
procedure seg memchangeValueD (sel : Word; ofs : DWord; size : DWord;
value: DWord; op : Mem Op);

Description: Combines a memory area with a value by a boolean operation which is outside the
DS selector range.

This procedure does the same as memchangeValue*, except that the memory area
may reside outside the DS selector range.

See also: Mem Op (12.5.1) memchangeValueB (92) memchangeValueW (92) memchangeVal-
ueD (92)

If you have any questions or feedback then e-mail me at tom at work@geocities.com.

93

Chapter 13

DPMI Unit (DPMI 0.9)

This documentation contains information about protected mode, the DPMI inter-
face and the DPMI unit itself. This should be a brief introduction into the basics
of protected mode programming in general and with FPC using this unit.

The main points which are discussed within this chapter are :

• Protected Mode (section 13.1)

• The DPMI Interface (section 13.2 itself)

• The DPMI Unit (section 13.3)

• DPMI unit function descriptions (section 13.4)

The original DPMI document was compiled by Thomas Schatzl on 1 January 1999.
For questions, suggestions, improvements or other things, mail at tom at work@geocities.com.

The Tex conversion was done by Marco van de Voort (MarcoV@stack.nl)

13.1 Protected mode

Protected mode was designed to fit the needs of modern multitasking operating
systems. Multitasking means that one or more actions (tasks) are seemingly done
at the same time. A good example for this is printing a document in the background
while doing something else.

These demands for CPUs are roughly:

• Protection of different tasks and operating systems against writes to invalid
memory areas

• Support at task-switching, preferably for saving and restoring of the task state

• Virtual memory support

• Privilegizing of the operating system for instructions

From the above four requirements the first one is the most striking (for GO32V2
programmers), because that means that memory access like in real mode would
exactly against the rule. In real mode the programmer could access any memory

94

DPMI Unit (DPMI 0.9) 13.2. THE DPMI INTERFACE

cell below the 1 MB boundary by simply loading a value between $0000 and $FFFF
into any segment register to overwrite important parts of the operating system
like the interrupt vector table, parts of COMMAND.COM, and other things which
surely cause the CPU to reset.

In protected mode you may get in big troubles, even when loading a random value
of a segment address into a segment register, because this causes the processor
to stop executing the program. This doesn’t reset or crash the processor, but he
simply calls an exception (an interrupt) which returns control to the underlying
operating system again, which in term simply terminates the program. It’s that
easy in protected mode.

This is only possible because segment addresses aren’t segment addresses anymore,
but (segment-)selectors. Selectors are indexes into a table of segment descriptors
which describe a single memory area. The CPU gets the base address of the memory
segment. Finally he adds the offset address from the pointer to this value to get
the real memory address of e.g. a variable. (No more multiply of the segment by
16 and then adding the offset like in real mode, hence memory segments can start
at any address)

A descriptor holds more than simply the base address of the segment, but several
additional information. These are the base address, the length of the segment
and finally some flags. (Please refer to a good book / documentation for further
reference, because that’s all that a protected mode programmer needs to know as
long as he doesn’t want to make his own operating system....)

This is where a DPMI extender comes into play.

13.2 The DPMI Interface

The DOS Protected Mode Interface (DPMI) was primarily defined to allow DOS
programs access to the extended memory area (memory ¿ 1MB) while maintaining
system protection. DPMI defines a subset of DOS and BIOS calls which can be
made by protected mode DOS programs. It also provides a new interface via Int
31h that protected mode programs use to allocate memory, modify descriptors, call
real mode software, etc.
Such a program is commonly called as a DPMI host.

13.3 The DPMI unit

This unit provides an interface to the various functions a DPMI host provides for
its application with the FPC compiler. Additionally I tried to add several functions
to simplify handling with selectors and some other useful procedures and features
which are missing in the GO32 unit.

Several issues of the DPMI API are handled by this unit:

• Error handling (99)

• Initialization services (99)

• LDT descriptor management (100)

• DOS memory management (107)

• Interrupt services (108)

95

DPMI Unit (DPMI 0.9) 13.4. DPMI UNIT FUNCTION DESCRIPTIONS

• Translation services (113)

• Get Version (118)

• Memory management services (105)

• Page locking services (115)

• Demand paging performance tuning services (117)

• Physical address mapping (106)

• Virtual interrupt state functions (111)

In addition to these, the unit DPMI provides several other functions

• Common used function combinations (”Time savers”) (118)

• Segment register access (121)

• Port access (124)

• Hardware interrupts handling (125)

• Transfer buffer access (126)

• ”Near Pointer”-handling (127)

• Fast memory transfer, set and change functions (using unit Memory chapter
12)

• Different mem[]-”arrays” suited for protected mode (using unit Farmem chap-
ter 11)

The documentation of unit Memory is ready at the moment of writing and should
be included in this document distribution. The documentation of unit Farmem is
not ready yet.

For people who want to port their code from the GO32 unit to the DPMI unit, look
at table (13.4) (Porting Go32 code to DPMI)

13.4 DPMI unit function descriptions

13.5 Types and Constants

13.5.1 Type : Descriptor

Descriptor = array[0..7] of Byte;

This array holds the contents of a descriptor. Since descriptor handling is normally
not done by the common programmer, I didn’t go into more detail. For further
reference what this array exactly contains, please consult a good protected mode
documentation.

See also LDT management services (100)

96

DPMI Unit (DPMI 0.9) 13.5. TYPES AND CONSTANTS

13.5.2 Type: Registers

type Registers = record
case integer of
0 : (edi, esi, ebp, res1, ebx, edx, ecx, eax : DWord;

Flags, es, ds, fs, gs, ip, cs, sp, ss : Word);
1 : (di, di2, si, si2, bp, bp2, res2, res3,

bx, bx2, dx, dx2, cx, cx2, ax, ax2 : Word);
2 : (res4 : array[1..4] of DWord;

bl, bh, bl2, bh2, dl, dh, dl2, dh2,
cl, ch, cl2, ch2, al, ah, al2, ah2 : Byte);

end;

This data structure contains the values which must be passed to or are returned by
an interrupt call or a real mode callback structure. See at Translation services (113)
for further reference about the usage of this structure

13.5.3 Type: Flags constants
const

fCarry = $0001 ;
fPar i ty = $0004 ;
fAux i l i a ry = $0010 ;
fZero = $0040 ;
fS ign = $0080 ;
fTrap = $0100 ;
f I n t e r rup t = $0200 ;
fD i r e c t i on = $0400 ;
fOverf low = $0800 ;

These constants define the bit location of the various flags within the flags-entry of
the ’register’ data structure. See Type Registers (97).

13.5.4 Type: PM Addr

type pm_Addr = record
offset : DWord;
selector : Word;
end;

This is the full definition of a single memory address in protected mode. It is 48 bit
in size, since a single memory segment is still 16 bit and it can be up to 32 bits in
size. See Interrupt services (108) or Translation services (113) for applications.

13.5.5 Type: RM Addr

type
rm_Addr = record
offset : Word;
segment : Word;
end;

Definition of a real mode address in segment:offset notation. See Translation services
(113) or Interrupt services (108) for applications.

97

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Table 13.1: Description of MemInfoBuf

Field identifier Description
largest available free block Largest available free block in bytes
max unlocked pages Maximum unlocked page allocation
max lockable pages Maximum locked page allocation
linear address space size Linear address space size in pages
number of unlocked pages Total number of unlocked pages
number of free pages Number of free pages
number of physical pages Total number of physical pages
free linear address space Free linear address space in pages
size of paging file Size of paging file/partition in pages
reserved Reserved

13.5.6 Type: MemInfoBuf

type
MemInfoBuf = record

largest_available_free_block : Longint;
max_unlocked_pages : Longint;
max_lockable_pages : Longint;
linear_address_space_size : Longint;
number_of_unlocked_pages : Longint;
number_of_free_pages : Longint;
number_of_physical_pages : Longint;
free_linear_address_space : Longint;
size_of_paging_file : Longint;
reserved : array[0..2] of Longint;
end;

The information block about memory used/allocated of the program which is re-
turned by dpmi get free memory information (105) only. See table (13.1) for a short
description of the fields.

Only the first entry is guaranteed to contain a valid value, the others contain 1
($FFFFFFFF) if invalid. To get the page size in bytes, look at dpmi get page size
(116).

13.5.7 Variable: Dpmi Error

var dpmi_error : DWord;

Contains the last error number occured by a DPMI call. See Errorhandling (99)
too.

13.6 DPMI functions and procedures

98

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.1 Error Handling

Since any of the DPMI calls can fail, I decided to let the programmer install its own
error handler which is called automatically at a DPMI call failure. This is done
via a special error routine (’handler’) which is called everytime an error occurs.
This handler can be redefined by the programmer to suit its own purposes. The
error handler is a simple procedure which gets the last error code as a dword as an
argument.

Such an error code consists of three parts: First comes the warning/fatal bits, then
a unit identifier to get to know which unit caused the error and last the error code
itself.

The fatal/warning bits are the upper 2 bits of the parameter dword. They may be
ignored by the error handler (because the caller decides the type of the error), but
it’s generally a good idea to halt on a fatal error.
Then comes a 10 bit sized unit identifier, which tells the error handler at which unit
the error happened.
And last a 20 bit sized error code, which can be output for reference.

Additionally *every* dpmi xxxx function returns a boolean result which indicates
success or fail, in the case you don’t want to care about the dpmi error variable
every time (and added a dummy error handler which does completely nothing).

Btw, error handling will be changed soon (too unflexible now), to something like
done in the API unit, so the error codes in the function descriptions aren’t entered
into the proper row. See table 2 where the error codes for all functions which return
errors are listed with their associated error code.

13.6.2 dpmi set error handler

Declaration: procedure dpmi set error handler(handler : error proc);

Description: Sets a new error handler for the DPMI unit

Parameters: handler the address of the new error handler procedure

Return value: none

Error code: none

Notes: The standard error handler updates the dpmi error variable, writes a message to
stdout, and triggers an RTE 216 (General Protection Fault) if the error was a fatal
one.

See also: Dpmi Error (98), Error handling (99)), table (13.2)

13.6.3 Initialization services

These function deal with detecting the current mode the cpu runs under

13.6.4 dpmi get cpu mode

Declaration: function dpmi get cpu mode(var in pm : Boolean) : Boolean;

Description: Returns information about the current CPU mode

Parameters: none

99

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Return value: in pm true if running under protected mode, false if not

Error code: none

Notes: GO32V2 applications generally don’t need to care about this.

See also: Initialization services,(99),

13.6.5 LDT management services

The LDT (local descriptor table) management services provide several interfaces
to allocate, free, resize, lock and unlock protected mode descriptors for the current
task.

13.6.6 dpmi allocate ldt descriptors

Declaration: function dpmi allocate ldt descriptors(number : Word; var basesel : Word)
: Boolean;

Description: Allocates one or more descriptors from the local task’s LDT. The descriptors al-
located must be initializd by the application.

Parameters: number number of selectors to allocate

Return value: basesel the base selector to the array of selectors allocated

Error code: $0000

Notes: If more than one descriptor was requested, basesel contains the first of a contiguous
array of descriptors. You should add the value returned by dpmi get next selector increment value()
to get to the next selector in the array.

See also: LDT management services,(100), dpmifreeldtdescriptor (100)

dpmisetsegmentbaseaddress (102), dpmigetsegmentbaseaddress (101), dpmisetseg-
mentlimit (102) dpmigetsegmentlimit (102), dpmisegmenttodescriptor (101), dp-
migetnextselectorincrementvalue (101) createselector (118), freeselector (119), map-
physicalmemory (119) table (13.2)

13.6.7 dpmi free ldt descriptor

Declaration: function dpmi free ldt descriptor(sel : Word) : Boolean;

Description: This function is used to free previously allocated selectors by dpmi allocate ldt descriptors()

Parameters: sel the selector to deallocate

Return value: none

Error code: $0001

Notes: Arrays of selectors must be freed individually by calling this function for each single
selector. You may use the free selector() function instead of this too.

See also: LDT management services,(100), dpmiallocateldtdescriptors (100) freeselector (119),
table (13.2)

100

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.8 dpmi segment to descriptor

Declaration: function dpmi segment to descriptor(seg : Word; var sel : Word) : Boolean;

Description: Converts a real mode segment into a descriptor which can be accessed by protected
mode programs.

Parameters: seg real mode segment address

Return value: sel selector mapped to real mode address

Error code: $0002

Notes: The selectors limit is always set to $FFFF (64k). Multiple calls to this function
with the same segment address will return the same selector. For this reason,
selectors created by this selector should never be freed or modified. Use this function
sparingly. If you want to examine different real mode segments it is better to allocate
a single selector by dpmi allocate ldt descriptors() and change its base address via
dpmi set segment base address() accordingly.

See also: LDT management services,(100), dpmiallocateldtdescriptors (100) dpmisetsegmentlimit
(102), dpmisetsegmentbaseaddress (102), table (13.2)

13.6.9 dpmi get next selector increment value

Declaration: function dpmi get next selector increment value(var incval : Word) : Boolean;

Description: Some functions (like allocate ldt descriptors()) can return more than one descrip-
tor. You must call this function to determine the value which must be added to a
selector to gain access to the next descriptor in the array.

Parameters: none

Return value: incval value to add to get to next selector

Error code: $0003

Notes: The returned value will be a power of two, but don’t make assumptions about the
value this function will return.

See also: LDT management services,(100), dpmiallocateldtdescriptors (100) table (13.2)

13.6.10 dpmi get segment base address

Declaration: function dpmi get segment base address(sel : Word; var baseaddr : DWord)
: Boolean;

Description: This function returns the 32bit linear base address of the specified segment.

Parameters: sel selector

Return value: baseaddr 32 bit linear base address of segment

Error code: $0006

Notes: This function fails if sel is invalid.

See also: LDT management services,(100), dpmiallocateldtdescriptors (100) dpmisetsegment-
baseaddress (102), dpmisetsegmentlimit (102), dpmigetsegmentlimit (102) getlinear-
address (119), table (13.2)

101

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.11 dpmi set segment base address

Declaration: function dpmi set segment base address(sel : Word; baseaddr : DWord)
: Boolean;

Description: This function changes the 32 bit linear address of the specified segment

Parameters: sel segment to change base address baseaddr new 32 bit base address

Return value: none

Error code: $0007

Notes: This function fails if sel is invalid. You should only modify descriptors that were
allocated via dpmi allocate ldt descriptors() before.

See also: LDT management services,(100), dpmiallocateldtdescriptors (100) dpmigetsegment-
baseaddress (101), dpmisetsegmentlimit (102), dpmigetsegmentlimit (102) createse-
lector (118), changeselector (119), table (13.2)

13.6.12 dpmi get segment limit

Declaration: function dpmi get segment limit(sel : Word; var limit : DWord) : Boolean;

Description: Returns the 32 bit limit of the specified segment

Parameters: sel selector

Return value: limit limit of the specified segment in bytes 1

Error code: See table about Error codes

Notes: This function will fail if the supplied selector is invalid.

See also: LDT management services,(100), dpmisetsegmentlimit (102) dpmigetsegmentbasead-
dress (101), dpmisetsegmentbaseaddress (102), table (13.2)

13.6.13 dpmi set segment limit

Declaration: function dpmi set segment limit(sel : Word; limit : DWord) : Boolean;

Description: This function sets the limit for the specified segment

Parameters: sel selector limit new 32 bit limit of segment in bytes 1

Return value: none

Error code: $0008

Notes: This function will fail when the specified selector is invalid or the requested limit
couldn’t be set. Segment limits greater than 1 MB must be page aligned, that
means, the lower 12 bits of the limit field must have the lower 12 bits set. Your
program should only modify descriptors that were previously allocated via the
dpmi allocate ldt descriptors() function.

See also: LDT management services,(100), dpmiallocateldtdescriptors (100) dpmigetseg-
mentlimit (102), dpmisetsegmentbaseaddress (102), dpmigetsegmentbaseaddress (101)
changeselector (119), table (13.2)

102

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.14 dpmi get descriptor access rights

Declaration: function dpmi get descriptor access rights(sel : Word; var rights : Word)
: Boolean;

Description: Returns the access rights and type field of the specified descriptor.

Parameters: sel selector

Return value: rights access rights / type field of the descriptor

Error code: See notes in Error codes table.

Notes: This function fails if the specified selector is invalid. See a DPMI specification for
the exact contents of the rights variable.

See also: LDT management services,(100), dpmisetdescriptoraccessrights (103) dpmigetde-
scriptor (104), dpmisetdescriptor (104), dpmiallocatespecificdescriptor (104) table
(13.2)

13.6.15 dpmi set descriptor access rights

Declaration: function dpmi set descriptor access rights(sel : Word; rights : Word)
: Boolean;

Description: This function allows protected mode programs to modify the access rights field of
a descriptor

Parameters: sel selector rights new access rights / type

Return value: none

Error code: $0009

Notes: This function will fail if the selector specified is invalid. Your program should only
change the access rights / type of descriptors allocated via the dpmi allocate ldt descriptors()
function.

See also: LDT management services,(100), dpmigetdescriptoraccessrights (103) dpmigetde-
scriptor (104), dpmisetdescriptor (104), dpmiallocatespecificdescriptor (104) table
(13.2)

13.6.16 dpmi create code segment alias descriptor

Declaration: function dpmi create code segment alias descriptor(codesel : Word; var
sel : Word) : Boolean;

Description: This function will create a data descriptor that has the same base and limit as the
specified code segment descriptor.

Parameters: codesel code segment selector

Return value: sel new data segment selector

Error code: $000A

103

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Notes: This function fails if the specified selector is invalid or not a code segment selector.
You have to use the dpmi free ldt descriptor() function to free such a descriptor
afterwards. The new data segment descriptor will not track changes from the code
segment descriptor. With FPC you don’t need this function, because you can
write to the code segment too (because it is automatically set as read/writeable at
startup)

See also: LDT management services,(100), dpmigetdescriptoraccessrights (103) dpmisetde-
scriptoraccessrights (103), table (13.2)

13.6.17 dpmi get descriptor

Declaration: function dpmi get descriptor(sel : Word; var descr : Descriptor) : Boolean;

Description: This function copies the descriptor table entry for a specified descriptor into a
buffer

Parameters: sel selector

Return value: descr 8 byte buffer holding the descriptor values

Error code: $000B

Notes: This function will fail if the selector specified is invalid or unallocated.

See also: LDT management services,(100), dpmisetdescriptor (104) dpmiallocatespecificde-
scriptor (104), dpmisetdescriptoraccessrights (103) dpmigetdescriptoraccessrights (103),
table (13.2)

13.6.18 dpmi set descriptor

Declaration: function dpmi set descriptor(sel : Word; descr : Descriptor) : Boolean;

Description: This function copies an 8 byte buffer into the LDT entry for a specified descriptor

Parameters: sel selector
desc 8 byte buffer containing descriptor

Return value: none

Error code: $000C

Notes: This function will fail if the selector specified is invalid. You should only modify de-
scriptors allocated by the dpmi allocate ldt descriptors() function. For a complete
description of the contents of the 8 byte buffer, please refer to a DPMI specification.

See also: LDT management services,(100), dpmigetdescriptor (104) dpmiallocatespecificde-
scriptor (104), table (13.2)

13.6.19 dpmi allocate speci�c descriptor

Declaration: function dpmi allocate specific descriptor(sel : Word) : Boolean;

Description: This function attempts to allocate a specific LDT descriptor.

Parameters: sel selector

Return value: none

104

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Error code: $000D

Notes: This function will fail if the specified selector is in use or not an LDT selector. You
need to use the dpmi free ldt descriptor() function to free this descriptor again.

See also: LDT management services,(100), dpmigetdescriptor (104) dpmisetdescriptor (104),
table (13.2)

13.6.20 Memory management services

These functions are provided to allocate memory in linear address space. This
should normally be of no concern to the standard FPC programmer, because FPC
automatically ’grows’ its heap.

13.6.21 dpmi get free memory information

Declaration: function dpmi get free memory information(var mem : meminfobuf) : Boolean;

Description: This function is provided so that protected mode applications can determine how
much memory is available. Under DPMI implementations that support virtual
memory, it is important to consider issues such as the amount of available physical
memory.

Parameters: mem 30 byte buffer

Return value: mem buffer filled out with memory information

Error code: $0002

Notes: To determine the size of pages, call the dpmi get page size() function.

See also: Memory management services,(105), dpmigetpagesize (116), table (13.2)

13.6.22 dpmi allocate memory block

Declaration: function dpmi allocate memory block(size : DWord; var linearaddr : DWord;
var blockhandle : DWord) : Boolean;

Description: This function allocates and commits linear memory.

Parameters: size size of requested memory block in bytes

Return value: linearaddr linear address of allocated memory block blockhandle memory block
handle (used to resize and free memory)

Error code: $0002

Notes: This function does not allocate any selectors for the memory block. It is up to
the application to allocate and initialize selectors needed for access. The block is
allocated unlocked. Allocations will be page granular, this means that an allocation
of $1001 bytes will result in allocation of $2000 bytes. Therefore it’s best to always
allocate memory in multiplies of 4K.

See also: Memory management services,(105), dpmifreememoryblock (106), dpmiresizemem-
oryblock (106), table (13.2)

105

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.23 dpmi free memory block

Declaration: function dpmi free memory block(blockhandle : DWord) : Boolean;

Description: This function frees a memory block that was allocated through the dpmi allocate memory block()
function.

Parameters: blockhandle handle of memory block to free

Return value: none

Error code: $0002

Notes: Your programs must also free selectors that it allocated to access the memory.

See also: Memory management services,(105), dpmiallocatememoryblock (105), table (13.2)

13.6.24 dpmi resize memory block

Declaration: function dpmi resize memory block(newsize : DWord; var blockhandle : DWord;
var linearaddr : DWord) : Boolean;

Description: This function changes the size of a memory block that was allocated through the
dpmi allocate memory block() function.

Parameters: newsize new size of memory block in bytes blockhandle handle of memory block
to resize

Return value: linearaddr new linear address of memory block blockhandle new blockhandle of
memory block

Error code: $0002

Notes: This function may change the linear address of the memory block and its handle.
Therefore, you’ll need to update any selectors that point to the block after resizing
it. You must use the new handle instead of the old one.

See also: Memory management services,(105), dpmiallocatememoryblock (105), dpmifreemem-
oryblock (106), table (13.2)

13.6.25 Physical address mapping

Memory mapped devices such as network or display adapters sometimes have mem-
ory mapped at physical addresses beyond the normal 1 Mb of realmode addressable
memory space. This service can be used to convert physical addresses of such
mapped memory into linear addresses. This 32 bit linear address then can be used
to access this memory.

13.6.26 dpmi physical address mapping

Declaration: function dpmi physical address mapping(physaddr : DWord; size : DWord;
var linearaddr : DWord) : Boolean;

Description: Converts physical memory addresses of devices into 32 bit linear addresses

Parameters: physaddr physical address of memory range size size of memory region in bytes 1

Return value: linearaddr linear address of device memory

106

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Error code:

Notes: The returned linear address can be used to access the devices’ memory. The ap-
plication must create a valid descriptor to this memory before accessing it. Do not
use this service to access memory that is mapped into the first megabyte of address
space. (The physical address equals the linear address in this memory area only)

See also: Physical address mapping,(106), mapphysicalmemory (119), table (13.2)

13.6.27 DOS memory management

Some programs require the ability to allocate memory in the real mode addressable
¡ 1 mb region. These following services allow protected mode applications to allo-
cate and free memory that is directly addressable by real mode software such as
networks and DOS device drivers. Often, this memory is used in conjunction with
the translation services to call real mode software that is not directly supported by
DPMI.

For easier access to this region the FPC team decided to automatically load the
memory region. So you must make sure that this segment register never changes
in your code, because some functions rely on this. Additionally they automatically
provide a preallocated transfer buffer to be available for temporary use (e.g. as long
as you don’t call certain FPC functions).

Some tips about address calculation follow:

To obtain the linear address (offset) from the DOS memory selector, you need to
calculate the address like it was in real mode. This linear address then can be used
to copy it to protected mode heap.

(linear address := segment * 16 + offset)

In reverse, to generate a segment:offset address out of a linear address do the fol-
lowing:

segment := linear address div 16; offset := linear address and 15;

This can be useful when you need to pass the segment:offset address of e.g. the
transfer buffer to a real mode interrupt.

13.6.28 dpmi allocate DOS memory block

Declaration: function dpmi allocate DOS memory block(size : DWord; var realaddr : rm Addr;
var sel : Word) : Boolean;
or function dpmi allocate DOS memory block(size : DWord; var realseg :
Word; var sel : Word) : Boolean;

Description: This function will allocate a block of memory from the DOS memory pool. It
returns both the real mode memory segment and a descriptor which can be used
by protected mode applications.

Parameters: size size of requested DOS memory block in bytes

Return value: realaddr DOS real mode segment:offset address of the allocated memory block
realseg DOS real mode segment of the allocated memory block sel protected mode
selector for allocated block

Error code: $0002

107

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Notes: Your program should never modify or deallocate any descriptors allocated by this
function. The dpmi free DOS memory block() function will automatically deallo-
cate the descriptors

See also: DOS memory managment,(107), dpmifreedosmemoryblock (108) dpmiresizeDOS-
memoryblock (108), table (13.2)

13.6.29 dpmi free DOS memory block

Declaration: function dpmi free DOS memory block(sel : Word) : Boolean;

Description: This function frees memory that was previously allocated by the dpmi allocate DOS memory block()
function.

Parameters: sel selector

Return value: none

Error code: $0002

Notes: The descriptor allocated for the memory block is automatically freed and therefore
should not be accessed once the freed by this function.

See also: DOS memory managment,(107), dpmiallocatedosmemoryblock (107) table (13.2)

13.6.30 dpmi resize DOS memory block

Declaration: function dpmi resize DOS memory block(newsize : DWord; sel : Word) :
Boolean;

Description: This function is used to grow or shrink a memory block that was previously allo-
cated by the dpmi allocated DOS memory block() function.

Parameters: newsize new block size in bytes sel selector of block to modify

Return value: none

Error code: $0002

Notes: Growing a DOS memory block is often likely to fail because other DOS memory
allocations will prevent increasing the size of the block. Therefore, this function is
usually only used to shrink a block

See also: DOS memory managment,(107), dpmiallocatedosmemoryblock (107) dpmifreedos-
memoryblock (108), table (13.2)

13.6.31 Interrupt services

These services allow protected mode programs to hook to interrupts and intercept
processor exceptions.

All interrupts from hardware (like keyboard, or timer) will always be reflected to
the protected mode handler first. If the protected mode handler jumps or calls the
previous interrupt handler, then the interrupt will be reflected to real mode.

As in real mode, interrupt procedures can either service the interrupt via iret or they
can chain to the next interrupt handler in an interrupt chain. The final handler
for all protected mode handlers will reflect the interrupt to real mode (e.g. the

108

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

real mode interrupt gets executed). When an interrupt is reflected to real mode
protected to real mode. The segment registers contain undefined values. The DPMI
host automatically provides a real mode stack for interrupts that are reflected to
real mode.

Hardware Interrupts

The interrupt controllers are mapped to the system’s default interrupts (e.g. the
master interrupt controller has a base interrupt of $8 and the slave controller has
a base of $70). Hardware interrupt procedures and all of their data must reside
in locked memory. All that memory touched by hardware interrupt hooks must
be locked. The handler will always be called on a locked stack. As in real mode,
hardware interrupts are called with interrupts disabled. Since iret doesn’t restore
the interrupt flag, the handler must enable interrupts via a sti instruction, else
interrupts will remain disabled.

Software interrupts

Most software interrupts executed in real mode will not be reflected to protected
mode interrupt hooks. However, there are some exceptions: Int $1C (BIOS timer
interrupt), Int $23 (DOS Ctrl+C interrupt), Int $24 (DOS critical error interrupt).

13.6.32 dpmi get rm interrupt

Declaration: function dpmi get rm interrupt(number : Byte; var addr : rm Addr) : Boolean;

Description: This function returns the value of the current task’s real mode interrupt vector for
the specified interrupt

Parameters: number interrupt number

Return value: rm Addr address of real mode interrupt vector

Error code:

Notes: The returned address is a real mode segment:offset address, not a protected mode
one.

See also: Interrupt services,(108), dpmisetrminterrupt (109) dpmigetpminterrupt (111), dp-
misetpminterrupt (111), dpmigetexceptionhandler (110) dpmisetexceptionhandler (110),
dpmisimulaterminterrupt (113), dpmiallocatermcallback (114) intr (120), realintr
(120), rm addr (97), table (13.2)

13.6.33 dpmi set rm interrupt

Declaration: function dpmi set rm interrupt(number : Byte; addr : rm Addr) : Boolean;

Description: This function sets the value of the current task’s real mode vector for the specified
interrupt.

Parameters: number interrupt number to set addr address of real mode interrupt

Return value: none

Error code: $0002

109

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Notes: The address passed to this function must be a real mode segment:offset address,
not a protected mode selector:offset address. This means that the code for the
interrupt handler must either be in DOS addressable memory or you must use a
real mode callback address. Refer to dpmi allocate DOS memory() on allocating
memory below 1 Mb. Information on real mode callbacks can be found at the
Translation services section.

See also: Interrupt services,(108), dpmigetrminterrupt (109) dpmigetpminterrupt (111), dp-
misetpminterrupt (111), dpmigetexceptionhandler (110) dpmisetexceptionhandler (110),
dpmisimulaterminterrupt (113), dpmiallocatermcallback (114) intr (120), realintr
(120), rm addr (97), table (13.2)

13.6.34 dpmi get exception handler

Declaration: function dpmi get exception handler(number : Byte; var addr : pm Addr)
: Boolean;

Description: This function returns the address of the current protected mode exception handler
for the specified exception number.

Parameters: number exception number

Return value: addr selector:offset of the exception

Error code: $0002

Notes: This function fails if the number passed was invalid.

See also: Interrupt services,(108), dpmisetexceptionhandler (110) dpmigetrminterrupt (109),
dpmisetrminterrupt (109), dpmigetpminterrupt (111) dpmisetpminterrupt (111), dp-
miallocatermcallback (114), dpmisimulaterminterrupt (113) intr (120), realintr (120),
pm addr (97), table (13.2)

13.6.35 dpmi set exception handler

Declaration: function dpmi set exception handler(number : Byte; addr : pm Addr) :
Boolean;

Description: This function allows protected mode programs to intercept processor exceptions
that are not handled by the DPMI environment. Programs may wish to handle
exceptions such as protection faults which would otherwise generate a fatal error.

Parameters: number exception/fault number ($00$1F) pm addr selector:offset address of ex-
ception handler

Return value: none

Error code: $0002

Notes: Every exception is first examined by the protected mode operating system. If it
cannot handle it, it then reflects it through the protected mode exception handler
chain. The final handler in the chain may either reflect the exception as an interrupt
or terminate the program. This function fails if the exception/fault number passed
is invalid. For further reference on how to deal with exceptions (and setting up a
handler), please consult a DPMI reference.

110

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

See also: 2 Interrupt services,(108), dpmigetexceptionhandler (110) dpmigetrminterrupt (109),
dpmisetrminterrupt (109), dpmigetpminterrupt (111) dpmisetpminterrupt (111), dp-
miallocatermcallback (114), dpmisimulaterminterrupt (113) intr (120), realintr (120),
pm addr (97), table (13.2)

13.6.36 dpmi get pm interrupt

Declaration: function dpmi get pm interrupt(number : Byte; var addr : pm Addr) : Boolean;

Description: This function returns the current selector:offset address for the specified protected
mode interrupt handler.

Parameters: number interrupt number

Return value: addr protected mode selector:offset vector of interrupt

Error code: $0002

Notes: The address returned is a protected mode selector:offset address, not a real mode
address. All 256 interrupts are supported by the DPMI host.

See also: Interrupt services,(108), dpmisetpminterrupt (111) dpmisetexceptionhandler (110),
dpmigetexceptionhandler (110), dpmigetrminterrupt (109) dpmisetrminterrupt (109),
dpmiallocatermcallback (114), dpmisimulaterminterrupt (113) intr (120), realintr
(120), pm addr (97), table (13.2)

13.6.37 dpmi set pm interrupt

Declaration: function dpmi set pm interrupt(number : Byte; addr : pm Addr) : Boolean;

Description: Sets the specified protected mode interrupt vector of the current task.

Parameters: number interrupt number to set addr new protected mode address of interrupt.

Return value: none

Error code: $0002

Notes: The address passed to this function must be a valid selector:offset protected mode
address.

See also: Interrupt services,(108), dpmigetpminterrupt (111) dpmisetrminterrupt (109), dp-
migetrminterrupt (109), dpmisetexceptionhandler (110) dpmigetexceptionhandler (110),
dpmiallocatermcallback (114), dpmisimulaterminterrupt (113) intr (120), realintr
(120), pm addr (97), table (13.2)

13.6.38 Virtual interrupt state functions

Under many implementations of DPMI, the interrupt flag in protected mode will
always be set (interrupts enabled). This is because the program is running under
a protected mode operating system that does not allow programs to disable phys-
ical hardware interrupts. However, the operating system will maintain a ’virtual’
interrupt state for protected mode programs. When the program exectues a ’cli’
instruction, the programs virtual interrupt state will be disabled, and the program
will not receive any hardware interrupts until it executes a ’sti’ to reenable inter-
rupts.

111

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.39 dpmi get and disable virtual interrupts

Declaration: function dpmi get and disable virtual interrupts(var prevstate : Boolean)
: Boolean;

Description: This function will disable the virtual interrupt state and return the previous state
of the virtual interrupt flag.

Parameters: none

Return value: prevstate previous virtual interrupt state

Error code:

Notes: Virtual interrupts are disabled after this call.

See also: Virtual interrupt state functions,(111), dpmigetandenablevirtualinterrupts (112),
dpmigetvirtualinterruptstate (112) table (13.2)

13.6.40 dpmi get and enable virtual interrupts

Declaration: function dpmi get and enable virtual interrupts(var prevstate : Boolean)
: Boolean;

Description: This function will enable virtual interrupts and return the previous state of the
virtual interrupt flag

Parameters: none

Return value: prevstate previous virtual interrupt state

Error code:

Notes: Virtual interrupts are enabled after this call

See also: Virtual interrupt state functions,(111), dpmigetanddisablevirtualinterrupts (112),
dpmigetvirtualinterruptstate (112) table (13.2)

13.6.41 dpmi get virtual interrupt state

Declaration: function dpmi get virtual interrupt state(var state : Boolean) : Boolean;

Description: Returns the current state of the virtual interrupt flag

Parameters: none

Return value: state current virtual interrupt flag state

Error code:

Notes: none

See also: Virtual interrupt state functions,(111), dpmigetandenablevirtualinterrupts (112),
dpmigetanddisablevirtualinterrupts (112) table (13.2)

112

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.42 Translation services

These services are provided so that protected mode programs can call real mode
software that DPMI does not support directly. The registers structure is passed by
the DPMI host to these programs.

All functions automatically provide a locked realmode stack of about 30 words.

If your program needs to perform a series of calls to a real mode API it’s sometimes
more convenient to use the translation services to call a real mode procedure in
your own program. That procedure can then issue the API calls in real mode and
then return to protected mode.

There is also a mechanism for protected mode software to gain control from real
mode via a real mode callback address. Real mode callbacks can be used to hook
to real mode interrupts or to be called in protected mode by a real mode driver.
For example, many mouse drivers will call a specified address whenever the mouse
is moved. This service allows the callback to be handled by software running in
protected mode.

13.6.43 dpmi simulate rm interrupt

Declaration: function dpmi simulate rm interrupt(number : Byte; var regs : Registers):
Boolean;

Description: This function simulates an interrupt in realmode.

Parameters: number interrupt to call regs register values supplied to interrupt

Return value: regs register values changed by interrupt

Error code: $0002

Notes:

See also: Translation services,(113), intr (120) realintr (120), registers (Type),(registers
(97)), dpmicallrmprocedurewithiretframe (114) table (13.2)

13.6.44 dpmi call rm procedure with retf frame

Declaration: function dpmi call rm procedure with retf frame(var regs : Registers)
: Boolean;

Description: This function calls a real mode procedure. The called procedure must end with a
far return when it completes.

Parameters: regs register values supplied to realmode procedure

Return value: regs register values modified by real mode procedure

Error code: $0002

Notes: The cs:ip in the register values structure specifies the address of procedure to call.
Note that all given segment registers in this structure need to be real mode segments.

See also: Translation services,(113), table (13.2)

113

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.45 dpmi call rm procedure with iret frame

Declaration: function dpmi call rm procedure with iret frame(var regs : Registers)
: Boolean;

Description: This function calls a realmode procedure which must return with an iret instruction

Parameters: regs registers supplied to realmode procedure

Return value: regs register values modified by realmode procedure

Error code:

Notes: The cs:ip fields in the register values structure specifies the address of the procedure
to call.

See also: Translation services,(113), table (13.2)

13.6.46 dpmi allocate rm callback

Declaration: function dpmi allocate rm callback(procaddr : pm Addr; regs : pm Addr;
var realaddr : rm Addr) : Boolean;

Description: This function is used to obtain a unique realmode segmentoffset address that will
transfer control from realmode to a protected mode procedure.

Parameters: procaddr selector:offset of procedure to call regs selector:offset of real mode call
structure

Return value: realaddr segment:offset of real mode call address

Error code:

Notes: Callback procedure parameters at entry: Interrupts disabled

Return from callback procedure: Execute an iret to return

The called procedur is responsible for modifying the realmode CS:IP before return-
ing. If the real mode CS:IP is left unchanged the realmode callback will be executed
immediately and your protected mode procedure will be called again. Normally
you’ll pop a return address off the realmode stack and place it in the real mode
CS:IP.

To return values to the realmode caller you must modify the realmode call structure.
Remember that all segment values in the real mode call structure will be realmode
segments, not selectors.

See also: Translation services,(113), table (13.2)

13.6.47 dpmi free rm callback

Declaration: function dpmi free rm callback(procaddr : rm Addr) : Boolean;

Description: This function frees a real mode callback address that was previously allocated
through the dpmi allocate rm callback() function.

Parameters: rm Addr realmode segment:offset callback address to free

Return value: none

Error code: $0002

114

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Notes: Real mode callbacks are a limited resource. They should be freed when no longer
used.

See also: Translation services,(113), table (13.2)

13.6.48 Page locking services

Many DPMI implementations supply virtual memory (as CWSDPMI and Win9x
does). In these environments it is necessary to lock any memory that can be touched
while executing inside of DOS. This is necessary because it may not be possible for
the operating system to demand load a page while DOS is busy. Under all DPMI
implementations, applications should lock interrupt code and data. The lock calls
will always return success under implementations that ignore these calls.

Although memory ranges are in specified in bytes, the actual unit of memory that
is locked will be one or more pages. Page locks are maintained as a count. When
the count is decremented to zero, the page is unlocked and can be swapped to disk.
This means if a region is locked three times then it must be unlocked three times
before the pages will be unlocked.

13.6.49 dpmi lock linear region

Declaration: function dpmi lock linear region(linaddr : DWord; size : DWord) : Boolean;

Description: This function locks a specified memory range

Parameters: linaddr starting linear address of memory range to lock size size of region to lock
in bytes

Return value: none

Error code:

Notes: If this function fails, no memory was locked. If the specified region overlaps part
of a page at the beginning or end, the whole page(s) will be locked.

See also: Page locking services,(115), table (13.2)

13.6.50 dpmi unlock linear region

Declaration: function dpmi unlock linear region(linaddr : DWord; size : DWord) : Boolean;

Description: Unlocks a specified linear address memory range that was previously locked by
dpmi lock linear region().

Parameters: linaddr starting linear address of memory range size size of region to be locked
in bytes

Return value: none

Error code: $0002

Notes: If the function fails, none of the memory will be unlocked. An error will be returned
if the memory was not previously locked or if the specified region is invalid. If the
specified region overlaps part of a page at the beginning or end, the page(s) will be
unlocked. Even if the function succeeds, the memory will remain locked if the lock
count is not decremented to zero.

See also: Page locking services,(115), table (13.2)

115

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.51 dpmi mark rm region as pageable

Declaration: function dpmi mark rm region as pageable(startaddr : DWord; size : DWord)
: Boolean;

Description: Normally some DPMI implementations lock the DOS real mode memory by default
to prevent disk swapping of this memory. If a protected mode program is using DOS
memory, it is a good idea to use this function to turn off automatic page locking
for regions of memory that are not touched by interrupts

Parameters: startaddr starting linear address of memory to be marked as pageable size size of
memory to page in bytes

Return value: none

Error code:

Notes: Do not mark memory not owned by your program as pageable. It is very important
to relock any real mode memory using dpmi relock rm region() before terminating
the program. Memory that remains unlocked after program exit may cause fatal
page faults when other software is accessing the same address space. Note that
address space marked as pageable may be locked by using dpmi lock linear region().
This function is only an advisory for the DPMI host to allow memory that doesn’t
be locked to be paged out. This function just disables any automatic locking of
realmode memory performed by the DPMI host. If this function fails then none of
the memory will be unlocked. If the specified region overlaps part of a page at the
beginning or end these page(s) will not marked as pageable.

See also: Page locking services,(115), table (13.2)

13.6.52 dpmi relock rm region

Declaration: function dpmi relock rm region(startaddr : DWord; size : DWord) : Boolean;

Description: This function is used to relock realmode memory previously locked via dpmi mark rm region as pageable().

Parameters: startaddr starting linear address of memory to be relocked size size of memory
region in bytes

Return value: none

Error code:

Notes: If this function fails, none of the memory specified will be relocked. If the specified
region overlaps part of a page at the beginning or end of the region, the page(s)
will not be relocked.

See also: Page locking services,(115), table (13.2)

13.6.53 dpmi get page size

Declaration: function dpmi get page size(var pagesize : DWord) : Boolean;

Description: Returns the size of a single memory page

Parameters: none

Return value: pagesize size of page in bytes

116

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Error code: none (this function never fails)

Notes: The typical size is 4 kb, but don’t make any assumptions on this.

See also: Page locking services,(115), table (13.2)

13.6.54 Demand paging performance tuning services

Some applications will discard memory objects or will not access memory objects
for long periods of time. These services can be used to improve performance of
demand paging.

Although these functions are only relevant for DPMI implementations that support
virtual memory (both CWSDPMI and Win9x do this), other implementations may
ignore this (although they always succeed).

Since both of this functions are simply advisory, the operating system may choose
to ignore these calls.

13.6.55 dpmi mark page as demand paging candidate

Declaration: function dpmi mark page as demand paging candidate(startaddr : DWord;
size : DWord) : Boolean;

Description: This function is used to inform the operating system that a range of pages should
be placed on top of the page out candidate list. This will force these pages to be
swapped to disk even if they were accessed recently. However all memory contents
will be preserved.

Parameters: startaddr starting linear address of pages to mark size size of region in bytes to
mark as paging candidates

Return value: none

Error code:

Notes: This function does not force the pages to be swapped immediately. Partial pages
will not be marked.

See also: Demand paging performance tuning services,(117), table (13.2)

13.6.56 dpmi discard page contents

Declaration: function dpmi discard page contents(startaddr : DWord; size : DWord)
: Boolean;

Description: This function discards the entire memory contents of a given linear memory range.
It is used after a memory object that occupied a given piece of memory has been
discarded.

Parameters: startaddr starting linear address of pages to discard size number of bytes to
discard

Return value: none

Error code:

117

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Notes: The contents of the memory region will be undefined the next time memory is
accessed. All values previously stored in this memory will be lost. Partial pages
will not be discarded.

See also: Demand paging performance tuning services,(117), table (13.2)

13.6.57 Miscellaneous services

13.6.58 dpmi get version

Declaration: function dpmi get version(var ver : Word; var flags : Word; var processor
: Byte; picbase : Word) : Boolean;

Description: Returns the version of the DPMI services supported.

Parameters: none

Return value: ver the hibyte is the major version number, the lowbyte the minor version number
flags refer to DPMI specification processor processor type (2=286..4=486) picbase
refer to DPMI specification

Error code: $0002

Notes: none :)

See also: Miscellaneous services (118), table (13.2)

13.6.59 Commonly used combinations of the above

(”Time savers”) These are functions which do multiple calls to the DPMI unit for
often repeated function sequences. This was done in order to make your life easier
and the code more understandable.

A list which DPMI functions what function calls can be seen in Table 5.

13.6.60 create selector

Declaration: function create selector(var sel : Word; baseaddr, size : DWord) : Boolean;

Description: Allocates a single new selector and initializes it to the specified values

Parameters: baseaddr linear 32 bit base address of new selector size new 32 bit segment limit
in bytes 1

Return value: none

Error code: See notes

Notes: This function calls several different DPMI functions, the error code returned is the
one from the DPMI functions called which caused the error.

See also: Commonly used combinations (118), table (13.5)

118

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.61 change selector

Declaration: function change selector(sel : Word; new baseaddr, new size : DWord)
: Boolean;

Description: Changes base address and limit of a single selector.

Parameters: new baseaddr new linear 32 bit base address of selector new size new 32 bit
segment limit in bytes 1

Return value: none

Error code: See notes

Notes: This function calls several different DPMI functions, the error code returned is the
one from the DPMI functions called which caused the error.

See also: Commonly used combinations (118), table (13.5)

13.6.62 free selector

Declaration: function free selector(sel : Word) : Boolean;

Description: Frees a previously allocated selector

Parameters: sel selector to free

Return value: none

Error code: See dpmi free ldt descriptor()

Notes: See dpmi free ldt descriptor()

See also: Commonly used combinations (118), table (13.5)

13.6.63 get linear address

Declaration: function get linear address(sel : Word; offset : DWord) : DWord;

Description: Returns the 32 bit linear address of a protected mode selector:offset address

Parameters: sel selector offset offset into selector

Return value: 32 bit linear address

Error code: See dpmi get segment base address()

Notes: See dpmi get segment base address()

See also: Commonly used combinations (118), table (13.5)

13.6.64 map physical memory

Declaration: function map physical memory(physaddr : DWord; size : DWord; var sel
: Word) : Boolean;

Description: Maps a memory area of a physical device to a single descriptor

Parameters: physaddr physical address of device to map size size of memory region to map in
bytes 1

119

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Return value: sel selector to memory region

Error code: See notes

Notes: This function uses several different DPMI calls, so the error code returned is the
one from the function which caused the error.

See also: Commonly used combinations (118), table (13.5)

13.6.65 intr

Declaration: function intr(num : Byte; var r : registers) : Boolean;

Description: Issues a real mode interrupt.

Parameters: num number of interrupt r supplied registers data structure

Return value: r registers data structure with the values changed by the interrupt

Error code: See dpmi simulate rm interrupt()

Notes: See dpmi simulate rm interrupt()

See also: Commonly used combinations (118), table (13.5)

13.6.66 realintr

Declaration: function realintr(num : Byte; var r : registers) : Boolean;

Description: Issues a real mod interrupt

Parameters: num number of interrupt r supplied registers data structure

Return value: r register values data structure changed by interrupt

Error code: See dpmi simulate rm interrupt()

Notes: See dpmi simulate rm interrupt()

See also: Commonly used combinations (118), table (13.5)

13.6.67 lock data

Declaration: function lock data(var data; size : DWord) : Boolean;

Description: Locks a memory range in the

Parameters: data address of data to be locked size size of memory range to be locked

Return value: none

Error code: See dpmi lock linear region()

Notes: See dpmi lock linear region()

See also: Commonly used combinations (118), table (13.5)

120

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.68 lock code

Declaration: function lock code(faddr : pointer; size : DWord) : Boolean;

Description: Locks a memory range in the

Parameters: faddr starting address to data (typically code) to be locked size size of memory
range to be locked

Return value: none

Error code: See dpmi lock linear region()

Notes: See dpmi lock linear region()

See also: Commonly used combinations (118), table (13.5)

13.6.69 unlock data

Declaration: function unlock data(var data; size : DWord) : Boolean;

Description: Unlocks a memory range in the

Parameters: data address of data to be unlocked size size of memory region to be unlocked

Return value: none

Error code: See dpmi unlock linear region()

Notes: See dpmi unlock linear region()

See also: Commonly used combinations (118), table (13.5)

13.6.70 unlock code

Declaration: function unlock code(faddr : Pointer; size : DWord) : Boolean;

Description: Unlocks a memory range in the

Parameters: faddr starting address of region to be unlocked size size of memory range in bytes

Return value: none

Error code: See dpmi unlock linear region()

Notes: See dpmi unlock linear region()

See also: Commonly used combinations (118), table (13.5)

13.6.71 Segment registers access

The following functions give FPC programs full read access to the different segment
registers.

121

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.72 CSeg

Declaration: function CSeg : Word;

Description: Returns the contents of the

Parameters: none

Return value: current value of

Error code: none (This function never fails)

Notes: It is allowed under FPC (GO32V2) to write to the code segment by default.

See also: Segment register access (121), dseg (122), dsegalias (122) eseg (123), fseg (123),
gseg (123), sseg (123),

13.6.73 DSeg

Declaration: function DSeg : Word;

Description: Returns the contents of the

Parameters: none

Return value: current value of

Error code: none (This function never fails)

Notes: rely on this

See also: Segment register access (121), cseg (122), dsegalias (122) eseg (123), fseg (123),
gseg (123), sseg (123),

13.6.74 DSegAlias

Declaration: function DSegAlias : Word;

Description: Returns djgpp ds alias, which is a copy of the

Parameters: none

Return value: value of djgpp ds alias

Error code: none (This function never fails)

Notes: The only difference between djgpp ds alias isn’t set to zero at a runtime error.
This is used by FPC so that the program automatically exits at the next It is good
to use this value instead of the standard realmode callbacks, so that runtime errors
do not occur while executing in realmode (done automatically).

See also: Segment register access (121), cseg (122), dseg (122), eseg (123) fseg (123), gseg
(123), sseg (123),

122

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.75 ESeg

Declaration: function ESeg : Word;

Description: Returns the contents of the

Parameters: none

Return value: current value of

Error code: none (This function never fails)

Notes: rely on this

See also: Segment register access (121), cseg (122), dseg (122), dsegalias (122) fseg (123),
gseg (123), sseg (123),

13.6.76 FSeg

Declaration: function FSeg : Word;

Description: Returns the contents of the

Parameters: none

Return value: current value of

Error code: none (This function never fails)

Notes: functions rely on this, so make sure that you restore it after use.

See also: Segment register access (121), cseg (122), dseg (122), dsegalias (122) eseg (123),
gseg (123), sseg (123),

13.6.77 GSeg

Declaration: function GSeg : Word;

Description: Returns the contents of the

Parameters: none

Return value: current value of

Error code: none (This function never fails)

Notes: This is the only segment register that can be changed without restoring it.

See also: Segment register access (121), cseg (122), dseg (122), dsegalias (122) eseg (123),
fseg (123), sseg (123)

13.6.78 SSeg

Declaration: function SSeg : Word;

Description: Returns the contents of the

Parameters: none

Return value: current value of

123

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Error code: none (This function never fails)

Notes:

See also: Segment register access (121), cseg (122), dseg (122), dsegalias (122) eseg (123),
fseg (123), gseg (123)

13.6.79 Port access

Port accesses are done via the following functions using DPMI in FPC

13.6.80 outportb

Declaration: procedure outportb(port : Word; data : Byte);

Description: Sends a single byte to the specified port address

Parameters: port port address to send data to data data byte sent

Return value: none

Error code: none (This function never fails)

Notes:

See also: Port access,(124), outportw (124) outportl (124), inportb (125) inportw (125),
inportl (125)

13.6.81 outportw

Declaration: procedure outportw(port : Word; data : Word);

Description: Sends a single word to the specified port address

Parameters: port port address to send data to data data word sent

Return value: none

Error code: none (This function never fails)

Notes:

See also: Port access,(124), outportb (124) outportl (124), inportb (125), inportw (125),
inportl (125),

13.6.82 outportl

Declaration: procedure outportl(port : Word; data : Longint);

Description: Sends a single longint to the specified port address

Parameters: port port address to send data to data data longint sent

Return value: none

Error code: none (This function never fails)

Notes:

See also: Port access,(124), outportb (124) outportw (124), inportb (125) inportw (125),
inportl (125)

124

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.83 inportb

Declaration: function inportb(port: Word) : Byte;

Description: Reads a single byte from the specified port address

Parameters: port Port address to get data from

Return value: Data byte read

Error code: none (This function never fails)

Notes:

See also: Port access,(124), outportb (124) outportw (124), outportl (124) inportw (125),
inportl (125)

13.6.84 inportw

Declaration: function inportw(port : Word) : Word;

Description: Reads a single word from the specified port address

Parameters: port Port address to get data from

Return value: Data word read

Error code: none (This function never fails)

Notes:

See also: Port access,(124), outportb (124) outportw (124), outportl (124) inportb (125),
inportl (125)

13.6.85 inportl

Declaration: function inportl(port : Word) : Longint;

Description: Reads a single longint from the specified port address

Parameters: port Port address to get data from

Return value: Data Longint read

Error code: none (This function never fails)

Notes:

See also: Port access,(124), outportb (124) outportw (124), outportl (124) inportb (125),
inportw (125)

13.6.86 Enable / disable hardware interrupts

Enable or disable hardware interrupts in time critical code.

125

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.87 Enable

Declaration: procedure Enable;

Description: Enables hardware interrupts

Parameters: none

Return value: none

Error code: none (This function never fails)

Notes: Issues a sti instruction

See also: Enable/Disable hardware interrupts,(125), disable (126),

13.6.88 Disable

Declaration: procedure Disable;

Description: Disables all hardware interrupts

Parameters: none

Return value: none

Error code: none (This function never fails)

Notes: Hardware interrupts shouldn’t be turned off for longer periods of time, because
several components of a modern PC rely on this.

See also: Enable/Disable hardware interrupts,(125), enable (126),

13.6.89 Transfer bu�er access

The transfer buffer is a preallocated DOS memory area, which can be freely used by
applications for temporary use, e.g. buffers for realmode interrupts which demand
that the buffer is located in realmode memory area (¡1MB boundary).

13.6.90 tb size

Declaration: function tb size : DWord;

Description: Returns the size of the preallocated transfer buffer.

Parameters: none

Return value: Size in bytes of the buffer

Error code: none (This function never fails)

Notes: Don’t make any assumptions about the size of this buffer, although it is typically
16 kb.

See also: Transfer buffer,(126), memory management,(105), tbsize (126),

126

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

13.6.91 tb address

Declaration: function tb address : DWord;

Description: Returns the linear offset of the transfer buffer from the

Parameters: none

Return value: Offset of buffer from the beginning of the

Error code: none (This function never fails)

Notes: The fseg() function can be used to determine the full 48 bit protected mode se-
lector:offset address for copying purposes. The real mode segment:offset address of
this block is (tb address() shr 4):(tb address() and $F) as usual..

See also: Transfer buffer,(126), memory management,(105), tbaddress (127),

13.6.92 "Near pointer" handling

Accessing memory via full 48 bit pointers (selector:offset) is sometimes very annoy-
ing, especially when you need to have access to devices that don’t reside in the video
cards. Especially if speed is a matter, the repeated reloading of segment registers
slows down code execution dramatically since this takes several cycles on modern
cpu’s. The solution is extending a segment’s limit to 4 GB and then accessing the
memory via a single 32 bit ”nearpointer” (also called FLAT pointers).

This is what the following functions do: They extend the limit of the Since the
limit doesn’t affect system functions and procedures, everything works fine as long
as FPC does not try to grow the heap. FPC does this in a way that the a ’Not
enough memory’ error, because it notices that the segment limit is at the maximum
and it can’t increase it any further.

So you have several options when designing programs:

know how much memory you need . Since FPC’s heap won’t grow then anymore
it’s no problem (with the Chxxxxxx compiler option)

every time you allocate memory in any way, restore the old segment registers (by
using dpmi disable nearptr()). After allocating memory as normal, and reenabling
nearpointer mapping you need to restore the pointers to external devices you got
dpmi nearptr address mapping() (typically you’ll only need one, a pointer to the
VGA)

the best way is to allocate all needed memory before you enable near pointer map-
ping

Use nearpointer mapping carefully ! This may destroy everything on your computer,
since your program can write everywhere to memory space then ;) (It’s like it was in
realmode times then, only with the difference that you have up to 4 GB of memory
available)

13.6.93 dpmi enable nearptr

Declaration: function dpmi enable nearptr : Boolean;

Description: Enables ”nearpointer” mapping by setting 32 bit limit of to $FFFFFFFF

Parameters: none

Return value: none

127

DPMI Unit (DPMI 0.9) 13.6. DPMI FUNCTIONS AND PROCEDURES

Error code: $F000

Notes: Near pointer mapping can be disabled at any time by issuing a dpmi disable nearptr()
call.

See also: ”Near pointer” handling,(127), dpmidisablenearptr (128) dpminearptrenabled (128),
dpminearptraddressmapping (128),

13.6.94 dpmi disable nearptr

Declaration: function dpmi disable nearptr : Boolean;

Description: Disables ”nearpointer” mapping by restoring the old values of and

Parameters: none

Return value: none

Error code: $F001

Notes: ”Near pointer” mapping can be enabled and disabled at any time, but once you
disabled near pointers, you’ll need to restore pointers which where gained via
dpmi nearptr address mapping() again since the base segment address may have
changed. All other FPC functions and procedures work as usual.

See also: ”Near pointer” handling,(127), dpmienablenearptr (127) dpminearptrenabled (128),
dpminearptraddressmapping (128)

13.6.95 dpmi nearptr enabled

Declaration: function dpmi nearptr enabled(var enabled : Boolean) : Boolean;

Description: Returns the current status of near pointer mapping

Parameters: none

Return value: enabled true if ”near pointers” are enabled, false if not

Error code: none (This function never fails)

Notes: none

See also: ”Near pointer” handling,(127), dpmienablenearptr (127) dpmidisablenearptr (128),
dpminearptraddressmapping (128),

13.6.96 dpmi nearptr address mapping

Declaration: function dpmi nearptr address mapping(physaddr, size : DWord; var nearptr
: Pointer) : Boolean;

Description: Returns a 32 bit ”near pointer” to a physical memory area (e.g. VGA)

Parameters: physaddr the physical address of the device size the memory size of the physical
device to be mapped 1

Return value: nearptr the 32 bit ”near pointer” to the physical memory area

Error code: $F002

128

DPMI Unit (DPMI 0.9) 13.7. APPENDIX A : INDEX

Notes: Fails if not in near pointer mode. This function uses several different other DPMI
functions, if they fail, they return their own error code.

See also: ”Near pointer” handling,(127), dpmienablenearptr (127) dpmidisablenearptr (128),
dpminearptrenabled (128),

13.7 Appendix A : index

table1

(Replaced by Tex generated index at start of document)

13.8 Appendix B : Error codes

Table 13.2: Error codes returned by DPMI functions

DPMI function Error codes returned Notes

function dpmi get cpu mode (99) (none) errcx1
function dpmi allocate ldt descriptors (100) $0000
function dpmi free ldt descriptor (100) $0001
function dpmi segment to descriptor (101) $0002
function dpmi get next selector increment value (101) ($0003) errcx1
function dpmi get segment base address (101) $0006
function dpmi set segment base address (102) $0007
function dpmi get segment limit (102) See notes errcx2
function dpmi set segment limit (102) $0008
function dpmi get descriptor access rights (103) See notes errcx2
function dpmi set descriptor access rights (103) $0009
function dpmi create code segment alias descriptor (103) $000A
function dpmi get descriptor (104) $000B
function dpmi set descriptor (104) $000C
function dpmi allocate specific descriptor (104) $000D
function dpmi get free memory information (105) ($0500) errcx1
function dpmi allocate memory block (105) $0501
function dpmi free memory block (106) $0502
function dpmi resize memory block (106) $0503
function dpmi physical address mapping (106) $0800
function dpmi allocate dos memory block (107) $0100
function dpmi free dos memory block (108) $0101
function dpmi resize dos memory block (108) $0102
function dpmi get rm interrupt (109) ($0200) errcx1
function dpmi set rm interrupt (109) $0201
function dpmi get exception handler (110) $0202
function dpmi set exception handler (110) $0203
function dpmi get pm interrupt (111) $0204
function dpmi set pm interrupt (111) $0205
function dpmi get and disable virtual interrupts (112) ($0900) errcx1
function dpmi get and enable virtual interrupts (112) ($0901) errcx1
function dpmi get virtual interrupt state (112) ($0902) errcx1
function dpmi simulate rm interrupt (113) $0300
function dpmi call rm procedure with retf frame (113) $0301
function dpmi call rm procedure with iret frame (114) $0302
function dpmi allocate rm callback (114) $0303
function dpmi free rm callback (114) $0304

129

DPMI Unit (DPMI 0.9)13.9. APPENDIX C : GO32 AND DPMI COMPARISON

Table 13.2: Error codes returned by DPMI functions

DPMI function Error codes returned Notes

function dpmi get version (118) $0400 errcx1
function dpmi lock linear region (115) $0600
function dpmi unlock linear region (115) $0601
function dpmi mark rm region as pageable (116) $0602
function dpmi relock rm region (116) $0603
function dpmi get page size (116) $0604
function dpmi mark page as demand paging candidate (117) $0702
function dpmi discard page contents (117) $0703
function create selector (118) See notes errcx3
function change selector (119) See notes errcx3
function free selector (119) See notes errcx3
function get linear address (119) See notes errcx3
function map physical memory (119) See notes errcx3
function intr (120) See notes errcx3
function realintr (120) See notes errcx3
function lock data (120) See notes errcx3
function lock code (121) See notes errcx3
function unlock data (121) See notes errcx3
function unlock code (121) See notes errcx3
function dpmi enable nearptr (127) $F000 errcx4
function dpmi disable nearptr (128) $F001
function dpmi nearptr enabled (128) (none) errcx1
function dpmi nearptr address mapping (128) $F002

Notes:
1 This function always succeeds, so you’ll never encounter a error here
2 Check the boolean result for success/fail
3 This is a combination of several subsequent DPMI calls. The error code is the one returned by the
DPMI call failed
4 May occur both as warning or as fatal error

13.9 Appendix C : Go32 and DPMI comparison

Table 13.3: Go32 and DPMI equivalents

GO32 term Equivalent DPMI term Notes

Constants
carry
ag
ag constants 97 conv1
parity
ag
ag constants 97 conv1
auxcarry
ag
ag constants 97 conv1
zero
ag
ag constants 97 conv1
sign
ag
ag constants 97 conv1
trap
ag
ag constants 97 conv1
interrupt
ag
ag constants 97 conv1
direction
ag
ag constants 97 conv1
over
ow
ag
ag constants 97 conv1
Types
tmeminfo MemInfoBuf (98)
tseginfo pm adddr (97), rm adddr (97)
trealregs registers (97)
registers registers (97)
Variables

130

DPMI Unit (DPMI 0.9)13.9. APPENDIX C : GO32 AND DPMI COMPARISON

Table 13.3: Go32 and DPMI equivalents

GO32 term Equivalent DPMI term Notes

dosmemselector fseg (123)
int31error dpmi error (98), dpmi set error handler (99) conv2
Functions & Procedures

allocate ldt descriptors() dpmi allocate ldt descriptors (100)
create selector (118)

free ldt descriptor() dpmi free ldt descriptor (100)
free selector (119)

segment to descriptor() dpmi segment to descriptor (101)
get next selector increment value() dpmi get next selector increment value (101)
get segment base address() dpmi get segment base address (101)
set segment base address() dpmi set segment base address (102)

create selector (118)
set segment limit() dpmi set segment limit (102)
set descriptor access rights() dpmi get descriptor access rights (103)
create code segment alias descriptor() dpmi create code segment alias descriptor (103)
get linear addr() dpmi physical address mapping (106)

map physical memory (119)
get linear address (119)

get segment limit() dpmi get segment limit (102)
get descriptor access right() dpmi get descriptor access rights (103)
get page size() dpmi get page size (116)
map device in memory block() notes conv3
realintr() dpmi simulate rm interrupt (113), intr (120),

realintr (120)
global dos alloc() dpmi allocate dos memory block (107)
global dos free() dpmi free dos memory block (108)
seg �llchar() notes
seg �llword() notes
get meminfo() dpmi get free memory information (105)
get pm interrupt() dpmi get pm interrupt (111)
set pm interrupt() dpmi set pm interrupt (111)
get rm interrupt() dpmi get rm interrupt (109)
set rm interrupt() dpmi set rm interrupt (109)
get exception handler() dpmi get exception handler (110)
set exception handler() dpmi set exception handler (110)
get pm exception handler() notes conv3, conv4
set pm exception handler() notes conv3, conv4
free rm callback() dpmi free rm callback (114)
get rm callback() dpmi allocate rm callback (114)
get cs() cseg (122) conv1
get ds() dseg (122), dsegalias (122) conv1
get ss() sseg (123) conv1
allocate memory block() dpmi allocate memory block (105) conv5, conv6
free memory block() dpmi free memory block (106) conv6
request linear region() notes conv3, conv4
lock linear region() dpmi lock linear region (115)
lock data() lock data (120)
lock code() lock code (121)
unlock linear region() dpmi unlock linear region (115)
unlock data() unlock data (121)
unlock code() unlock code (121)
disable() disable (126)
enable() enable (126)
inportb() inportb (125)
inportw() inportw (125)

131

DPMI Unit (DPMI 0.9)13.10. APPENDIX D : GO32 AND DPMI COMPARISON

Table 13.3: Go32 and DPMI equivalents

GO32 term Equivalent DPMI term Notes

inportl() inportl (125)
outportb() outportb (124)
outportw() outportw (124)
outportl() outporl (124)
get run mode() notes conv7
transfer bu�er() tb address (127)
tb segment() tb address (127)
tb o�set() tb address (127)
tb size() tb size (126)
copytodos() notes conv8
copyfromdos() notes conv8
dosmemput() notes conv8
dosmemget() notes conv8
dosmemmove() seg memcpy() conv9
dosmem�llchar() seg memsetb() conv9
dosmem�llword() seg memsetw() conv9

Notes:

• 1 Actually more than these are supplied by DPMI

• 2 The dpmi error vrriable (dpmi error (98)) is updated by the errorhandler supplied by dpmi set error handler
(99) by default.

• 3 DPMI 1.0 function, does not work at all.

• 4 Works only with CWSDPMI under real DOS (not Windows9x DOS-Box) in FPC

• 5 Buggy implementation in GO32

• 6 DPMI allows resizing of these blocks via dpmi resize memory block (106) too

• 7 Obsolete, because DPMI only supports GO32V2 model

• 8 Use equivalent seg memcpy() or seg memsetX() commands supplied by MEMORY.

• 9 See the documentation for the MEMORY unit (memory.htm included in this package)

13.10 Appendix D : Go32 and DPMI comparison

Btw, this table shows only a direct translation of these GO32 calls. It’s often much better and easier to
use other functions or "time-saver" functions. Seettable5

Table 13.4: Go32DPMI syntax example

GO32 syntax example DPMI syntax example Notes

selector := allocate ldt descriptors(2) dpmi allocate ldt descriptors (100)(2,selector) ntab1
free ldt descriptor(selector) dpmi free ldt descriptor (100)(selector) ntab2
selector := segment to descriptor($A000) dpmi segment to descriptor (101)($A000,selector)
selincr := get next selector increment value() dpmi get next selector increment value (101)(selincr)
base address := dpmi get segment base address (101)

get segment base address(selector) (selector,base address)
set segment base address(selector, new address) dpmi set segment base address (102)(selector,new address) ntab1
set segment limit(selector, new limit) dpmi set segment limit (102)(selector,limit)
set descriptor access rights(selector, new rights) dpmi get descriptor access rights (103)(selector,new rights)
datasel := dpmi create code segment alias descriptor (103)

create code segment alias descriptor(code sel) (code sel,data sel)
linear addr := get linear addr(phys addr, size) dpmi physical address mapping (106)(phys addr,size, linear addr) nsnt3
limit := get segment limit(selector) dpmi get segment limit (102)(selector,limit)

132

DPMI Unit (DPMI 0.9)13.10. APPENDIX D : GO32 AND DPMI COMPARISON

Table 13.4: Go32DPMI syntax example

GO32 syntax example DPMI syntax example Notes

rights := get descriptor access right(selector) dpmi get descriptor access rights (103)(selector,rights)
page size := get page size() dpmi get page size (116)(page size)
map device in memory block() See notes nsnt4
realintr(reg num, reg bu�er) dpmi simulate rm interrupt (113)(reg num,reg bu�er) nsnt5
result := global dos alloc(size);
realseg := word(result);
dos selector := word(result shr 16); dpmi allocate dos memory block (107)(size,realseg, dos selector)
global dos free(dos selector) dpmi free dos memory block (108)(dos selector)
seg �llchar(selector, o�set, size, char(byte value)) seg memsetb(selector, o�set, size, byte value) nsnt6, nsnt7
seg �llword(selector, o�set, size, word value) seg memsetw(selector, o�set, size, word value) nsnt6, nsnt7
get meminfo(bu�er) dpmi get free memory information (105)(bu�er)
get pm interrupt(number, tseginfo bu�er) dpmi get pm interrupt (111)(number,pm Addr(bu�er)) nsnt8
set pm interrupt(number, tseginfo bu�er) dpmi set pm interrupt (111)(number,pm Addr(bu�er)) nsnt8
get rm interrupt(number, tseginfo bu�er) dpmi get rm interrupt (109)(number,rm Addr(bu�er)) nsnt8
set rm interrupt(number, tseginfo(bu�er)) dpmi set rm interrupt (109)(number,rm Addr(bu�er)) nsnt8
get exception handler(number, tseginfo(bu�er)) dpmi get exception handler (110)(number,pm Addr(bu�er)) nsnt8
set exception handler(number, tseginfo(bu�er)) dpmi set exception handler (110)(number,pm Addr(bu�er)) nsnt8
get pm exception handler() See notes nsnt4
set pm exception handler() See notes nsnt4
free rm callback(tseginfo(intaddr)) dpmi free rm callback (114)(rm Addr(intaddr))
get rm callback(@func addr, dpmi allocate rm callback (114) (pm Addr(func Addr),

registers, tseginfo(rmcb)) pm Addr(registers), rm Addr(rmcb)) nsnt7
cs := get cs() cs := cseg (122) nsnt6
ds := get ds() ds := dseg (122) nsnt6, nsnt9
ss := get ss() ss := sseg (123) nsnt6
linaddr := allocate memory block(size) dpmi allocate memory block (105)(size,handle, linaddr)) nsnt10
free memory block(handle) dpmi free memory block (106)(handle) nsnt11
function request linear region() See notes nsnt4
lock linear region(linear addr, size) dpmi lock linear region (115)(linear addr,size) nsnt6
lock data(bu�er, size) lock data (120)(bu�er, size) nsnt6
lock code(func addr, size) lock code (121)(func addr, size) nsnt6
unlock linear region(linear addr, size) dpmi unlock linear region (115)(linear addr,size) nsnt6
unlock data(bu�er, size) unlock data (121)(bu�er, size) nsnt6
unlock code(func addr, size) unlock code (121)(func addr, size) nsnt6
disable() disable (126) nsnt6
enable() enable (126) nsnt6
data := inportb(port) data := inportb (125)(port) nsnt6
data := inportw(port) data := inportw (125)(port) nsnt6
data := inportl(port) data := inportl (125)(port) nsnt6
outportb(port, data) outportb (124)(port, data) nsnt6
outportw(port, data) outportw (124)(port, data) nsnt6
outportl(port, data) outportl (124)(port, data) nsnt6
get run mode() See notes nsnt12
address := transfer bu�er() address := tbaddress (127) nsnt6
seg := tb segment() seg := tb address (127) shr 4
ofs := tb o�set() ofs := tb address (127) and$0F
size := tb size() size := tb size (126) nsnt6
copytodos(bu�er, size) seg memcpy(dseg, dword(bu�er), fseg, tb address(), size) nsnt7
copyfromdos(bu�er, size) seg memcpy(fseg, tb address(), dseg, dword(@address), size)) nsnt7
dosmemput(seg, ofs, bu�er, size) seg memcpy(dseg, dword(@bu�er), fseg, seg shl 4 + ofs, size) nsnt7
dosmemget(seg, ofs, bu�er, size) seg memcpy(fseg, seg shl 4 + ofs, dseg, dword(@bu�er), size) nsnt7
dosmemmove(srcseg, srcofs, dstseg, dstofs, size) seg memcpy(fseg, srcseg shl 4 + ofs, fseg,

dstseg shl4 + dstofs, size) nsnt7
dosmem�llchar(seg, ofs, size, char(value)) seg memsetb(fseg, seg shl 4 + ofs, size, byte(value)) nsnt7, nsnt8
dosmem�llword(seg, ofs, size, value) seg memsetw(fseg, seg shl 4 + ofs, size, value) nsnt7

133

DPMI Unit (DPMI 0.9)
13.11. APPENDIX E : ”TIME SAVER” PROCEDURES AND THEIR

EQUIVALENT DPMI AND GO32 FUNCTION CALLS

Table 13.4: Go32DPMI syntax example

GO32 syntax example DPMI syntax example Notes

seg move(srcsel, srcofs, dstsel, dstofs, size) seg memcpy(srcsel, srcofs, dstsel, dstofs, size) nsnt6, nsnt7
seg �llchar(sel, ofs, size, char(value)) seg memsetb(sel, ofs, size, char(value)) nsnt6, nsnt7
seg �llword(sel, ofs, size, value) seg memsetw(sel, ofs, size, value) nsnt6, nsnt7

Notes:

• 1 You could use create selector() too

• 2 free selector() could be used too

• 3 Better use map physical memory for short

• 4 This DPMI 1.0 function won"t work on a DPMI 0.9 host (as CWSDPMI and Win9x DOS box
is), so there is no equivalent in DPMI

• 5 Use realintr(), or even easier intr() which does the same

• 6 Same syntax

• 7 By using MEMORY which is automatically included within DPMI via a uses clause

• 8 ’Typecasts’ indicate that a di�erent type of a passed bu�er is expected in DPMI

• 9 dseg alias() could be used too

• 10 The GO32 function is missing an important parameter (handle)

• 11 Since you don’t get a handle for such a GO32 memory block, this function is useless there

• 12 Obsolete since DPMI only works in GO32V2 mode

13.11 Appendix E : ”Time saver” procedures and their
equivalent DPMI and GO32 function calls

Table 13.5: "Time saver" procedures and their equivalent DPMI and
GO32 function calls

create selector (118)(selector,baseaddr, size) dpmi allocate ldt descriptors (100)(1,selector)
and dpmi set segment base address (102)(selector,baseaddr)
and dpmi set segment limit (102)(selector,size)

change selector (119)(selector,new baseaddr,new size) dpmi set segment base address (102)(selector,new baseaddr)
and dpmi set segment limit (102)(selector,new size)

free selector (119)(selector) dpmi free ldt descriptors (100)(selector)
get linear address (119)(selector,o�set) dpmi get segment base address (101)(selector,baseaddr) adding o�set
map physical memory (119)(phys addr,limit, selector) dpmi allocate ldt descriptors (100)(1,selector) and dpmi physical address mapping (106)(phys addr,limit, linearaddr) and dpmi set segment base address (102)(selector,linearaddr) and dpmi set segment limit (102)(selector,size)
intr (120)(number, registers) dpmi simulate rm interrupt (113)(number,registers)
realintr (120)(number, registers) dpmi simulate rm interrupt (113)(number,registers)
lock data (120)(bu�er, size) dpmi lock linear region (115)(get linear address (119)(dseg,dword(@bu�er),size)
lock code (121)(func addr, size) dpmi lock linear region (115)(get linear address (119)(cseg,dword(func addr),size)
unlock data (121)(bu�er, size) dpmi unlock linear region (115)(get linear address (119)(dseg,dword(@bu�er),size)
unlock code (121)(bu�er, size) dpmi unlock linear region (115)(get linear address (119)(cseg,dword(func addr),size)

134

Index

AddCRC, 21
AddExtension, 47
AppendBackSlash, 59
ArchiveMethod, 43

BinaryToStr, 65
BitRates, 54
BuildTree, 32

CalcCRC, 21
Ceremony, 23
Change, 82
change selector, 119
ChangeExtension, 48
CharPos, 60
CharPosSet, 62
CHARSET, 50
Clear, 83
ClearStat, 31
ClusterSize, 30, 40
CMOSRec, 34
CommaStr, 69
CompressTabs, 69
Coordinates, 79
create selector, 118
CreateCRC32Table, 20
CSeg, 122

DatiToStr, 25
DayNr, 24
DayNrBack, 24
DelDir, 48
DirsToo, 30
Disable, 126
DOW, 24
dpmi allocate DOS memory block, 107
dpmi allocate ldt descriptors, 100
dpmi allocate memory block, 105
dpmi allocate rm callback, 114
dpmi allocate speci�c descriptor, 104
dpmi call rm procedure with iret frame, 114
dpmi call rm procedure with retf frame,

113
dpmi create code segment alias descriptor,

103
dpmi disable nearptr, 128
dpmi discard page contents, 117
dpmi enable nearptr, 127
dpmi free DOS memory block, 108

dpmi free ldt descriptor, 100
dpmi free memory block, 106
dpmi free rm callback, 114
dpmi get and disable virtual interrupts, 112
dpmi get and enable virtual interrupts, 112
dpmi get cpu mode, 99
dpmi get descriptor, 104
dpmi get descriptor access rights, 103
dpmi get exception handler, 110
dpmi get free memory information, 105
dpmi get next selector increment value, 101
dpmi get page size, 116
dpmi get pm interrupt, 111
dpmi get rm interrupt, 109
dpmi get segment base address, 101
dpmi get segment limit, 102
dpmi get version, 118
dpmi get virtual interrupt state, 112
dpmi lock linear region, 115
dpmi mark page as demand paging candidate,

117
dpmi mark rm region as pageable, 116
dpmi nearptr address mapping, 128
dpmi nearptr enabled, 128
dpmi physical address mapping, 106
dpmi relock rm region, 116
dpmi resize DOS memory block, 108
dpmi resize memory block, 106
dpmi segment to descriptor, 101
dpmi set descriptor, 104
dpmi set descriptor access rights, 103
dpmi set error handler, 99
dpmi set exception handler, 110
dpmi set pm interrupt, 111
dpmi set rm interrupt, 109
dpmi set segment base address, 102
dpmi set segment limit, 102
dpmi simulate rm interrupt, 113
dpmi unlock linear region, 115
DriveType, 38
Drv, 37
DSeg, 122
DSegAlias, 122
DumpIdenti�er, 56
DumpTag, 56

Easter, 25
Enable, 126
ESeg, 123

135

INDEX INDEX

ExpandTabs, 69
ExtensionPos, 47

FilAttr, 29
FileAppend, 49
FileExists, 44
FileScan, 31
FillCard, 50
free selector, 119
FromUnix, 25
FSeg, 123
FullScreen, 80

GenerateShortName, 41
Genre, 54
get linear address, 119
GetBetween, 68
GetCMOS, 41
GetCursorSize, 51
GetKey, 51
GetLongPathName, 40
GetSerial, 38
GetShortPathName, 40
GetSwapData, 40
GetTag, 55
Gettag errorcodes, 54
GetVolume, 38
GSeg, 123

Height and Width, 80
HexToStr, 66
Hide, 82

ID3 constants, 54
ID3Tag, 55
inportb, 125
inportl, 125
inportw, 125
Installed, 41
intr, 120
Invert, 70
InvertCRC, 21
IsDevice, 42
IsMp3, 56
ISqrt, 51
Item procedures, 67

KillBChar, 58
KillChar, 58
KillChrTot, 59
KillFileTree, 33

LastDrv, 39
LeapYr, 24
LeftStr, 71
LGrow, 66
lock code, 121
lock data, 120
LowerCase, 63

LTrim, 57

map physical memory, 119
Match, 73
memchange, 92
memchangeValue, 92
memcpy, 91
memset, 92
MidStr, 72
MkFullDir, 49
Months and Dows, 23
MovableCeremony, 26

NextCharPos, 61
NextCharPosSet, 62
NextRCharPos, 62
NrDrives, 40
NrFixedDisks, 39
NrFloppies, 39

OctToStr, 65
outportb, 124
outportl, 124
outportw, 124

Poly32, 20
procedure types, 29

RCharPos, 61
realintr, 120
RemoveExtension, 47
Replace, 71
ReplaceChar, 60
ReplaceLast, 71
RGrow, 67
RightStr, 72
RPos, 70
RTrim, 57

SampleFreq, 55
ScanR, 51
ScanTree, 32
SearchForFiles, 32
seg memchange, 93
seg memchangeValue, 93
seg memcpy, 92
seg memset, 93
set fs to dosmem, 52
SetCursorSize, 51
SetFAttr, 30
SetTag, 55
SetTitle, 81
Slice, 72
SSeg, 123
Statisticsvariables, 30
StripChar, 59
StripDoubleChar, 63
StrStr, 67
StrToBinary, 64

136

INDEX INDEX

StrToHex, 65
StrToOct, 64
Styles, 79
SubstExpand, 37

tb address, 127
tb size, 126
tdosmem based variables, 88
tdosmemb, 86
tdosmeml, 87
tdosmemw, 86
TestUART, 42
tfarmem based variables, 88
tfarmemb, 87
tfarmeml, 88
tfarmemw, 87
Touch, 48
ToUnix, 24
TreeBuildingTypes, 29
TrueName, 39
TSwapInfo, 37

UART, 37
UnHide, 82
unlock code, 121
unlock data, 121
UpperCase, 64
Use, 81

WeekNr, 25
WinClone, 84
WinClose, 81
WinDef, 79
WinMove, 83
WinOpen, 80
WinType, 79
WinVer, 41
WrapWrite, 85
WrArrChar, 49
WrBinary, 46
WrHex, 45
WrLngBinary, 46
WrLngHex, 45
WrLngOct, 46
WrOct, 46
WrStrAdj, 48

137

	XtdFPC package/ The Toolkit
	Installation
	Requirements
	platforms
	FPCdiscretionary {-}{}{}versions

	Internals
	Conditionals
	Procedure and unit names

	Copyright and license data
	The GNU General Public Licence

	These docs

	ECRC32 unit
	general notes
	Types and Constants
	Poly32

	procedures and functions
	CreateCRC32Table
	CalcCRC
	AddCRC
	InvertCRC
	example

	EDate Unit
	Types and constants
	Months and Dows
	Ceremony

	Procedures and functions
	LeapYr
	DayNr
	DayNrBack
	DOW
	ToUnix
	FromUnix
	WeekNr
	Easter
	DatiToStr
	MovableCeremony

	The EDirTree unit.
	Introduction
	Objectives while implementing the unit
	procedure groups

	Types and constants
	procedure types
	FilAttr
	TreeBuildingTypes

	Variables
	DirsToo
	Statisticsvariables
	ClusterSize

	Procedures and Functions
	SetFAttr
	ClearStat
	FileScan
	BuildTree
	SearchForFiles
	ScanTree
	KillFileTree

	EDos
	Types and variables
	CMOSRec
	TSwapInfo
	Drv
	UART
	SubstExpand

	Procedure and functions
	GetSerial
	GetVolume
	DriveType
	NrFloppies
	NrFixedDisks
	LastDrv
	TrueName
	GetLongPathName
	GetShortPathName
	ClusterSize
	NrDrives
	GetSwapData
	WinVer
	GenerateShortName
	GetCMOS
	Installed
	TestUART
	IsDevice

	The EFIO unit.
	Types and constants
	Functions and procedures
	ArchiveMethod
	FileExists
	WrHex
	WrLngHex
	WrOct
	WrLngOct
	WrBinary
	WrLngBinary
	ExtensionPos
	RemoveExtension
	AddExtension
	ChangeExtension
	WrStrAdj
	Touch
	DelDir
	FileAppend
	MkFullDir
	WrArrChar

	ELib
	Types
	CHARSET

	Procedures and Functions
	FillCard
	ScanR
	ISqrt
	GetKey
	SetCursorSize
	GetCursorSize
	set_fs_to_dosmem

	The EMP3 unit.
	How the MP3 Check is implemented
	Types and constants
	Genre byte
	Genre
	ID3 constants
	Gettag errorcodes
	BitRates
	SampleFreq
	ID3Tag

	Procedure and functions
	GetTag
	SetTag
	IsMp3
	DumpTag
	DumpIdentifier

	The EPasStr unit.
	Functions and procedures.
	LTrim
	RTrim
	KillChar
	KillBChar
	StripChar
	KillChrTot
	AppendBackSlash
	ReplaceChar
	CharPos
	NextCharPos
	RCharPos
	NextRCharPos
	CharPosSet
	NextCharPosSet
	StripDoubleChar
	LowerCase
	UpperCase
	StrToBinary
	StrToOct
	StrToHex
	BinaryToStr
	OctToStr
	HexToStr
	LGrow
	RGrow
	StrStr
	Item procedures
	GetBetween
	CommaStr
	CompressTabs
	ExpandTabs
	Invert
	RPos
	ReplaceLast
	Replace
	LeftStr
	RightStr
	MidStr
	Slice
	Match

	The EWindow unit.
	unit EWindow
	Additional remarks, bugs and principles
	Project status
	EWindow internal
	Error handling

	Types
	Styles
	Coordinates
	WinType
	WinDef

	Variables
	Height and Width
	FullScreen

	Functions and procedures
	WinOpen
	WinClose
	SetTitle
	Use
	Hide
	UnHide
	Change
	WinMove
	Clear
	WinClone
	WrapWrite

	Farmem Unit
	Class defintions
	tdosmemb
	tdosmemw
	tdosmeml
	tfarmemb
	tfarmemw
	tfarmeml

	Predefined variables
	tdosmem based variables
	tfarmem based variables

	The Memory Unit
	FEATURES
	BACKGROUND
	SYSTEM REQUIREMENTS
	PROGRAMMING LANGUAGE
	Types of the memory unit
	Mem_Op (enumeration)
	DWORD

	Memory Functions
	memcpy
	memset
	memchange
	memchangeValue
	seg_memcpy
	seg_memset
	seg_memchange
	seg_memchangeValue

	DPMI Unit (DPMI 0.9)
	Protected mode
	The DPMI Interface
	The DPMI unit
	DPMI unit function descriptions
	Types and Constants
	Type : Descriptor
	Type: Registers
	Type: Flags constants
	Type: PM_Addr
	Type: RM_Addr
	Type: MemInfoBuf
	Variable: Dpmi_Error

	DPMI functions and procedures
	Error Handling
	dpmi_set_error_handler
	Initialization services
	dpmi_get_cpu_mode
	LDT management services
	dpmi_allocate_ldt_descriptors
	dpmi_free_ldt_descriptor
	dpmi_segment_to_descriptor
	dpmi_get_next_selector_increment_value
	dpmi_get_segment_base_address
	dpmi_set_segment_base_address
	dpmi_get_segment_limit
	dpmi_set_segment_limit
	dpmi_get_descriptor_access_rights
	dpmi_set_descriptor_access_rights
	dpmi_create_code_segment_alias_descriptor
	dpmi_get_descriptor
	dpmi_set_descriptor
	dpmi_allocate_specific_descriptor
	Memory management services
	dpmi_get_free_memory_information
	dpmi_allocate_memory_block
	dpmi_free_memory_block
	dpmi_resize_memory_block
	Physical address mapping
	dpmi_physical_address_mapping
	DOS memory management
	dpmi_allocate_DOS_memory_block
	dpmi_free_DOS_memory_block
	dpmi_resize_DOS_memory_block
	Interrupt services
	dpmi_get_rm_interrupt
	dpmi_set_rm_interrupt
	dpmi_get_exception_handler
	dpmi_set_exception_handler
	dpmi_get_pm_interrupt
	dpmi_set_pm_interrupt
	Virtual interrupt state functions
	dpmi_get_and_disable_virtual_interrupts
	dpmi_get_and_enable_virtual_interrupts
	dpmi_get_virtual_interrupt_state
	Translation services
	dpmi_simulate_rm_interrupt
	dpmi_call_rm_procedure_with_retf_frame
	dpmi_call_rm_procedure_with_iret_frame
	dpmi_allocate_rm_callback
	dpmi_free_rm_callback
	Page locking services
	dpmi_lock_linear_region
	dpmi_unlock_linear_region
	dpmi_mark_rm_region_as_pageable
	dpmi_relock_rm_region
	dpmi_get_page_size
	Demand paging performance tuning services
	dpmi_mark_page_as_demand_paging_candidate
	dpmi_discard_page_contents
	Miscellaneous services
	dpmi_get_version
	Commonly used combinations of the above
	create_selector
	change_selector
	free_selector
	get_linear_address
	map_physical_memory
	intr
	realintr
	lock_data
	lock_code
	unlock_data
	unlock_code
	Segment registers access
	CSeg
	DSeg
	DSegAlias
	ESeg
	FSeg
	GSeg
	SSeg
	Port access
	outportb
	outportw
	outportl
	inportb
	inportw
	inportl
	Enable / disable hardware interrupts
	Enable
	Disable
	Transfer buffer access
	tb_size
	tb_address
	"Near pointer" handling
	dpmi_enable_nearptr
	dpmi_disable_nearptr
	dpmi_nearptr_enabled
	dpmi_nearptr_address_mapping

	Appendix A : index
	Appendix B : Error codes
	Appendix C : Go32 and DPMI comparison
	Appendix D : Go32 and DPMI comparison
	Appendix E : "Time saver" procedures and their equivalent DPMI and GO32 function calls

