
S o l e t t a¸

STANDARD DELPHI LIBRARY

Tutorial and Reference Guide

1

STANDARD DELPHI LIBRARY¸

Tutorial and Reference Guide

Copyright c© 1998 Soletta and Ross Judson All rights reserved.
Soletta

(Contact information for Soletta removed, since Soletta does’t provide support anymore, their
homepage now links to sf.net and I don’t want to bother them. They did release the contents of this

distribution under MPL on http://sourceforge.net/projects/decal)

2

Contents

1 Word from the porter 8

2 Introduction 9
2.1 Product Versions . 10

3 How to use this documentation 11

4 Quick Start 12

5 Installation 13
5.1 Archive Installation . 13

5.2 Soletta Store Installation . 13

6 Basic Concepts 14
6.1 Accessing the SDL and SuperStream Libraries . 14

6.2 Item . 14

6.3 Container . 14

6.4 Iterator . 14

6.5 Comparator . 15

6.6 Closure . 15

6.7 Morphing Closure . 15

6.8 Garbage Collection . 15

6.9 AtEnd . 16

6.10 Range . 16

6.11 Pair . 16

6.12 Sequence . 16

6.13 Vector . 16

6.14 Map . 16

6.15 Set . 17

6.16 Hashing . 17

6.17 Algorithm . 17

7 Quick Example 18

3

CONTENTS

8 A Note About Namespaces 19

9 Error Handling 20

10 Ten Easy SDL Lessons 21
10.1 Lesson 1 - Keeping Lists of Objects . 21

10.2 Lesson 2 – Keeping Lists of Strings and other Atomic Types 23

10.3 Lesson 3 – Iterating with Iterators . 24

10.4 Lesson 4 – Using SDL instead of Delphi’s Data Structures 25

10.5 Lesson 5 – Using Maps (Key-Value Pairs . 27

10.6 Lesson 6 – Using Sets . 28

10.7 Lesson 7 – Using the Sort Algorithms . 30

10.8 Lesson 8 – Changing Data Structures . 31

10.9 Lesson 9 – Transforming Objects . 32

10.10Lesson 10 – Filtering Objects . 33

11 Containers 35
11.1 All About DObjects . 35

11.2 Example Code . 36

11.3 Container hierarchy . 36

11.4 DIterator . 36

11.4.1 Forward Iterators . 39

11.4.2 Bidirectional Iterators . 39

11.4.3 Random Iterators . 39

11.4.4 Iterator Adapters . 40

11.5 DContainer . 40

11.5.1 Comparators . 40

11.5.2 Constructing Containers . 41

11.5.3 Number of Items . 41

11.5.4 Adding Items . 42

11.5.5 Removing Items . 42

11.5.6 Retrieving Items . 42

11.6 DSequence . 43

11.6.1 Adding Items . 43

11.6.2 Retrieving Items . 43

11.6.3 Removing Items . 43

11.7 DVector . 43

11.8 DAssociative . 44

11.8.1 Sets and Maps . 44

11.8.2 Adding Elements . 44

11.8.3 Finding Elements . 45

4

CONTENTS

11.8.4 Removing Elements . 45

11.9 Container Adapters . 45

11.10Creating Your Own Containers . 45

11.11Frequently Asked Questions . 45

11.11.1 How do I get the number of items in a container? 45

11.11.2 How do I add items to a container? . 45

11.11.3 How do I iterate over a container? . 45

11.11.4 How do I retrieve the keys from a map container? 46

11.11.5 How do I sort a sequence? . 46

11.11.6 Why does SDL use functions instead of class members for its algorithms . . 46

11.11.7 How do I find items in a map? . 46

12 Algorithms 47
12.1 A Note About Ranges . 47

12.2 Naming Conventions . 47

12.3 Applying . 48

12.3.1 forEach . 48

12.3.2 Inject . 48

12.4 Comparing . 48

12.4.1 Equal . 48

12.4.2 LexicographicalCompare . 48

12.4.3 Median . 49

12.4.4 Mismatch . 49

12.5 Copying . 49

12.5.1 Copy . 49

12.6 Counting . 49

12.6.1 Count . 49

12.7 Filling . 50

12.7.1 Fill . 50

12.7.2 Generate . 50

12.8 Filtering . 50

12.8.1 Unique . 50

12.8.2 Filter . 50

12.9 Finding . 51

12.9.1 AdjacentFind . 51

12.9.2 BinarySearch . 51

12.9.3 Detect . 51

12.9.4 Every . 51

12.9.5 Find . 51

12.9.6 Some . 51

5

CONTENTS

12.10Freeing and Deleting . 52

12.10.1 ObjFree . 52

12.10.2 ObjDispose . 52

12.10.3 ObjFreeKeys . 52

12.11Hashing . 52

12.11.1 OrderedHash . 52

12.11.2 UnorderedHash . 52

12.12Removing . 52

12.12.1 Remove . 52

12.12.2 removeCopy . 53

12.12.3 removeIf . 53

12.13Replacing . 53

12.13.1 Replace . 53

12.13.2 ReplaceCopy . 53

12.13.3 ReplaceIf . 53

12.14Reversing . 53

12.14.1 Reverse . 53

12.14.2 ReverseCopy . 54

12.15Rotating . 54

12.15.1 Rotate . 54

12.15.2 RotateCopy . 54

12.16Set Operations . 54

12.16.1 Includes . 54

12.16.2 SetDifference . 54

12.16.3 SetIntersection . 54

12.16.4 SetSymmetricDifference . 55

12.16.5 SetUnion . 55

12.17Shuffling . 55

12.17.1 RandomShuffle . 55

12.18Sorting . 55

12.18.1 Sort . 55

12.18.2 StableSort . 55

12.19swapping . 55

12.19.1 IterSwap . 55

12.19.2 SwapRanges . 56

12.20Transforming . 56

12.20.1 Collect . 56

12.20.2 TransformBinary . 56

12.20.3 TransformUnary . 56

6

CONTENTS

13 Utility Functions 57
13.1 Atomic Converters . 57

13.2 Iterator Helpers . 57

13.3 Hashing . 58

13.4 DObject Helpers . 58

13.5 Morphing Closures . 59

13.6 Printing . 60

14 Debugging Support 62

15 Persistence with SuperStream 63
15.1 Basic Concepts . 63

15.1.1 Stream . 63

15.1.2 Object . 63

15.1.3 Atomic Types . 64

15.1.4 Transfer Function . 64

15.1.5 Object Versioning . 64

15.1.6 Buffered Stream . 64

15.2 Nine Easy SuperStream Lessons . 65

15.2.1 Lesson 1 – Saving and Loading One Object 65

15.2.2 Lesson 2 – Storing Different Objects . 66

15.2.3 Lesson 3 – Writing Embedded Objects . 68

15.2.4 Lesson 4 – Inheritance and SuperStream . 69

15.2.5 Lesson 6 – Storing Special Types (TDateTime, Single, Double) 71

15.2.6 Lesson 7 – Storing Raw Data . 73

15.2.7 Lesson 8 – Storing Complex Object Graphs 74

15.2.8 Lesson 9 – Reading and Writing Different Versions of Objects 75

15.3 SuperStream Classes . 77

15.3.1 TStreamAdapter . 77

15.3.2 TObjStream . 77

15.3.3 TBufferedInputStream . 78

15.3.4 TBufferedOutputStream . 78

15.3.5 TObjList . 78

16 Epilogue 79

7

Chapter 1

Word from the porter

This is the DeCal port to Free Pascal. I first got regressdecal running with v1.9.3(CVS) on 2004-04-
12, the bug I found was a problem introduced while doing an earlier attempt however, so it could be
that earlier versions (most notable stable beta 1.9.2) work too. In September 2006 I committed some
post 2.0 fixes (mostly related to some differences in threading setup in Unix)

The feedback has been fairly minimal over all these years, and nothing much happened since the
initial port. There are still some patches on the SF site I have to investigate.

The library is pretty much MPL’ed abandonware. I hope the manual also falls under this MPL license,
but IIRC I didn’t get a response on a mail to Ross about this matter. The manual is included with the
open source archive on sf.net though.

I try to keep DeCal delphi compatible, but I can only test with D6 at work, and don’t go actively
searching or fixing problems under Delphi. I just try to incorporate patches, and fix things as I
encounter them at work and with FPC. Of course, most of the code is not compiler dependant.

I don’t believe in keeping Delphi pkgs Delphi.NET compilable, so please don’t ask or send .NET
related patches, unless they are very minor.

I mainly used Decal for prototyping purposes, and quick sideprojects, and while it does have some
performance/footprint issues that make it unsuitable for extreme cases, it is great for prototyping, and
I was amazed that this was possible in Delphi at all.

Until FPC gets generics, this is the best thing we are going to get as Object Pascal programmers.

Decal is available in FPC "auxilary source" svn as module /fpcprojects/contrib/decal . More SVN
data can be found on SVN doc

This manual is created by copy and pasting the original Soletta "guide.pdf" into Word 2000, and
saving it as RTF. After that the RTF was put through rtf2latex, and postprocessed intensively for a
few hours. If you find mistakes, don’t hesitate to mail them.

Only the contact and sales information of Soletta was removed (actually it is only commented in the
Latex source), to avoid unnecessary mail to Soletta, who made it pretty clear that they are not actively
doing anything with DECAL at the moment

I know I’m not a native speaker, so corrections to this section are also welcome :-)

Marco van de Voort
2004-04-13

Eindhoven, NL
EMail: marco@freepascal.org

8

http://www.freepascal.org/wiki/index.php/SVN_Migration

Chapter 2

Introduction

The Standard Delphi Library (SDL) by Soletta is a powerful library of reusable container classes,
generic algorithms, and an easy to use persistence mechanism. SDL is designed for intermediate
to advanced Delphi programmers who have a need for sophisticated data structures or who wish
to take advantage of SDL’s large library of generic algorithms. SDL is also highly appropriate for
programmers who are experienced with the C++ STL (Standard Template Library), or ObjectSpace’s
JGL (Java Generic Library). SDL is an adaptation of Stepanov and Lee’s concepts to the Delphi
environment.

SDL offers a number of features not found in any other Delphi class library:

Powerful underlying methodology SDL is the first data structure and algorithm library for Delphi
to be based on generic programming with reusable algorithms and data structures. It is based
on a mature and sophisticated model (STL).

Natural and easy to use storage of atomic data types This means that SDL containers can be used
to hold any Delphi data type (such as Integers, Strings, Extended values) with no special syn-
tax. SDL is the first container library to take advantage of Delphi’s array of const feature,
which lifts a significant burden from the programmer.

Generic algorithms Like STL and JGL, SDL comes with over 60 generic algorithms. The set of
algorithms was originally chosen by Stepanov; SDL provides implementations of many of
the algorithms found in STL. Thus, an STL programmer will be immediately familiar. SDL’s
container classes follow the interface/iterator model; the consequence is that most generic
algorithms will work on any container class.

Integrated persistence SDL’s companion library, SuperStream (included with SDL Source Edi-
tion), provides a capable, easy to use method for storing and retrieving objects in Delphi. SDL
comes complete with the integration code necessary to use SuperStream and SDL together. Su-
perStream and SDL are based on many of the same techniques, so programmers who become
familiar with one will be immediately familiar with the other.

Complete set of data structures SDL includes arrays, double-linked lists, maps, and sets. The
mapping structures are available both in red-black tree and hashing form. There are at least ten
different data structures available, with more being developed.

Atomic, associative data structures SDL is the first data structure library for Delphi to provide nat-
ural, atomic storage of associations. For example, adding to a map is as simple as map.putPair([10,
‘hello’]). This places the value ‘hello’ at key 10 in the map. Note that the values are specified
without any object wrappers. We can also just as easily add objects to the map: map.putPair([‘Ross
Judson’, objTest]).

9

CHAPTER 2. INTRODUCTION

2.1 Product Versions

SDL is available in two versions: The binary release and the source release. The garbage collection
feature is available only in the source release, as it requires recompilation of the SDL unit to enable.
Both versions are available directly from Soletta – please email sales@soletta.com for information on
purchasing either product. If you have the binary release and wish to upgrade to the source release,
please contact Soletta, and we’ll guide you through the process.

You may have acquired the trial version of SDL on the internet. If so, we’re glad that you’re taking
the time to look at SDL, and see if it can help you. You’ll find the Lessons in the sections ahead to
be particularly insightful, and we recommend that you read them closely. SDL isn’t really like other
container class libraries for Delphi, and to appreciate the power it gives you, you’ll need an open
mind!

If you are coming from an STL or JGL background, reading the SDL documentation will be easy
for you. SDL uses the same terms, the same words, and the same ideas. You’ll find it to be an
effective adaptation of the STL methodology to Delphi. You’ll also find that it makes migrating C++
programmers (who have experience with STL) to Delphi easier.

SDL pushes the envelope with Delphi, right to the limit. It’s exciting when a language can be manip-
ulated to effectively accomplish tasks it wasn’t designed to do directly. This is the hallmark of the
mature language and environment, and Delphi’s time is now.

10

Chapter 3

How to use this documentation

SDL is sufficiently different from other container class libraries (and just about every other class
library) for Delphi that you should read the Guide section of this manual fairly

thoroughly. Programming with containers and generic algorithms takes some thought, planning,
and knowledge if you’re going to get the most benefit from it. Reading the Reference material will
give you a good feel for what’s in the library; you should probably read it after you’ve done some
programming with SDL.

The Guide has three major sections – Containers, Algorithms, and Persistence. Containers discusses
the data structures in SDL, enumerates their relative advantages and disadvantages, and illuminates
the iterator concept. Algorithms lists the major types of algorithms that are present in SDL, and how
to apply them to containers. Persistence discusses storing and loading objects from streams.

The Containers section can be read on its own. The Algorithms section should be read only after
reading the Containers section. The Persistence section stands alone, but if you want to understand
the mechanism used to serialize SDL Containers, you should have a working knowledge of them
first.

Soletta highly recommends that you study the Algorithms at length. Their names are generic, but the
tasks that they perform occur over and over again in common programming situations. The trick is
to recognize when a task can be performed by one of the generic algorithms. A side effect of using
them is that your code becomes more readable to persons fluent with generic algorithms. Much like
patterns, code comprehension is often based on vocabulary, and the Algorithms in this library provide
an excellent set of verbs.

Included with SDL is an HTML reference to the library that was generated with another Soletta
product, DelphiDoc. That HTML reference should be considered to be the most accurate source of
information, as it is directly generated from the SDL source code. If there are differences between
what you read here and what you find in the HTML reference, this document will defer to the HTML.

11

Chapter 4

Quick Start

Here’s what you need to know to get started with SDL quickly:

1. Become familiar with the basic concepts of this library.

2. Learn about the basic container classes and DObjects, which are the basic items that are stored
in containers.

3. Learn about iterators – the types of iterators, and the functions that operate on them.

4. Learn basic techniques for adding items to containers, and how to iterate over containers.

5. Learn about what the algorithms can do for you.

6. Learn about SuperStream, SDL’s persistence mechanism.

Each of these is in the order we suggest you learn. The best thing to do is put together a few quick
programs that make use of basic SDL features so you can get a feel for how the library operates.
After you’ve done that, come back to the reference material, which you’ll then be able to read with
good basic proficiency in place.

12

Chapter 5

Installation

SDL and SuperStream have been delivered to you in one of several ways:

• As an archive, downloaded from the internet

• On a CD-ROM

• From the Soletta Store, for online purchasing of Soletta libraries

5.1 Archive Installation

If you’ve downloaded an archive, unzip the contents of the archive into a new directory. Make sure
that you preserve the paths in the archive! The HTML documentation has a large number of files,
and you’ll want to make sure that they land in the correct directories.

Make sure the directory you created is on your library path (Tools | Environment Options, library
page) – Delphi needs this to find the SDL and SuperStream unit files.

Copy the sdlhelp.hlp and sdlhelp.cnt files to the Help directory in your Delphi installation.

Add :link sdlhelp.hlp to the last section of the delphi.cfg file, and :include sdlhelp.cnt to the last
section of the delphi.cnt file. This will enable F1 based help for SDL.

5.2 Soletta Store Installation

The Soletta Store will automatically emit libraries into a directory you specify. You will still need to
add the directory to the Delphi Library Path, and add the help file entries, as above.

13

Chapter 6

Basic Concepts

To effectively use SDL, you need to learn about its parts and become familiar with SDL’s vocabulary.
SDL uses the same words to describe its concepts that JGL and STL do, so if you’re familiar with
those, you’ll adapt to SDL quickly. If you’re not familiar with other generic programming packages,
you’ll want to read this section thoroughly.

6.1 Accessing the SDL and SuperStream Libraries

To use classes and functions from the SDL library, make sure the SDL unit is in your uses statement.
To use classes and functions from SuperStream, make sure SuperStream is in your uses clause.

If you will be streaming SDL containers with SuperStream, make sure your program includes the
SDLIO unit. No function calls are necessary – including the unit will perform all necessary registra-
tion and initialization.

6.2 Item

In SDL, items are atomic values or objects. An atomic value is one of the basic types, like an
Integer, String, Currency, or Char. An object is also an atomic type because Delphi treats all objects
by reference (pointer).

6.3 Container

A container is a data structure that can hold a number of items. Different types of containers have
different capabilities – for example, one type of container may support very fast deletion, but slow
addition, and another might support fast random access but slow deletion. When you need a container
class, choose an appropriate one based on what you need that container to do. Each container class
is describe later on in this guide, and the strengths and weaknesses of each are provided.

6.4 Iterator

An iterator is analogous in many ways to a pointer. It points at a certain item in a container. Iterators
can be moved forward, and can usually be moved backwards. The object under the iterator can be
retrieved, and can sometimes be set. Iterators are the preferred way for algorithms and for your

14

CHAPTER 6. BASIC CONCEPTS

code to deal with SDL containers. If you use iterators to access the containers, you can change the
container without changing your code. This is one of the primary strengths of SDL. You will see the
following constructs very often when perusing SDL-based code:

I t e r a t o r : = c o n t a i n e r . s t a r t ;
I t e r a t o r : = c o n t a i n e r . f i n i s h ;

The start function retrieves an iterator positioned on the first item in the container. The finish func-
tion retrieves an atEnd iterator (which is positioned just after the last item in the container). See
atEnd for more information on the special atEnd iterator.

6.5 Comparator

A comparator is a function used to compare two items. It should return less than zero if the first object
is less than the second; zero if the two objects are equal, and greater than zero if the second object is
greater than the first. Comparators are closures (procedures of objects) with a special signature. See
Closure and Morphing Closure for related information.

Here’s the signature of a DComparator:

DComparator = f u n c t i o n (c o n s t obj1 , ob j2 : DObject) : I n t e g e r of o b j e c t ;

6.6 Closure

A closure is a procedure of object. Closures are at the heart of Delphi’s event model – hopefully, as a
Delphi programmer, you understand how they work. While effective for event handling, the closure
mechanism is an elegant solution for any situation in which methods of objects must be called. All
of SDL’s functional types are defined as procedure of object. This allows them to be methods on
objects. If SDL did not do this, you would need to create unit-level procedures for procedures you
wanted to pass to SDL. SDL also supports the transformation of unit-level procedures into Closures
– see Morphing Closure.

6.7 Morphing Closure

A unit-level procedure can be transformed into a closure by making use of one of the MakeXXX
family of functions. This makes use of a Delphi trick that fools Delphi’s method calling mechanism
into believing that it is calling a closure.

6.8 Garbage Collection

Garbage collection is a more advanced, automatic method of dealing with memory allocation issues.
Delphi has traditionally been programmed using manual memory management, which means that the
programmer is responsible for allocating and deallocating all objects. In a garbage collecting system,
the programmer only allocates objects. The system will deallocate them when it determines that it is
permissible to do so.

SDL is compatible with a garbage collection system called the Boehm Collector. The Boehm Col-
lector is a conservative, mark-and-sweep collector.

15

CHAPTER 6. BASIC CONCEPTS

6.9 AtEnd

SDL maintains positions in containers using iterators. There is a special iterator position known as
atEnd. An atEnd iterator is positioned one past the last item in the container. It is illegal to retrieve
an object from this position. It is sometimes legal to write to this position – certain containers will
add the object being written to the end of the container, but not all containers will do this. Notably,
the mapping containers will not. AtEnd is important – when algorithms don’t succeed, they will
often return atEnd as their result.

6.10 Range

A range is a pair of iterators, marking the beginning and ending of a set of items. For example, there
is a range of items between container.start and container.finish

6.11 Pair

A pair is two items (two DObjects, stored in a DPair). The mapping containers store pairs, each
consisting of a key (stored in the .first field) and a value (stored in the .second field).

6.12 Sequence

A sequence is a container where the items in the container have a defined order. Containers descended
from sequence will retrieve their items in the order that they were added.

Examples of sequences include linked lists and arrays.

6.13 Vector

A vector is a container whose items are numerically addressable. That is, you can specify that you
want the first item, or the tenth, or the fiftieth. While all sequences can return the item at a specific
position, being a vector implies that this operation is efficient. Vectors are usually implemented as
arrays, but other implementations can exist.

6.14 Map

Maps store key-value pairs. As a user of SDL, you should pay special attention to maps because
it has been estimated that for other, similar container libraries, up to 90% of all container usage is
of map-based structures. Maps store associative data. For example, you may want to keep a set of
employee objects, keyed by employee ID. What does it mean to key on employee ID ? It means that
you want to associate an employee object (say, Jim Smith’s), with a numeric ID (like 1001). You do
this by putting a pair to the map structure:

Map.putPair([1001, jimSmithObject]);

When you want to retrieve the employee associated with 1001, you do the following:

employee := getObject(map.locate([1001])) as TEmployee;

16

CHAPTER 6. BASIC CONCEPTS

Mapping containers ensure that the process of looking up a key value is very efficient. SDL has two
basic kinds of maps in it: An ordered map (based on red-black trees) and an unordered map (based
on hash structures).

There are two basic variants on maps: A MultiMap and a regular Map. The difference is that Mul-
tiMaps can store multiple objects on the same key. Storing a value at a key in a regular map will
replace whatever value was stored there before.

6.15 Set

Sets store items and allow you to rapidly determine if a set contains a particular item or not. You
may already be familiar with Delphi’s set types. SDL’s sets are much more general – you can have
sets of numbers, strings, objects, or just about anything else. As with maps, there are MultiSets and
regular Sets. A MultiSet can have multiple copies of an object in it. Sets also come in the two basic
kinds – red-black based and hash based.

6.16 Hashing

Hashing is the process of converting an item (or object) into a number. SDL provides a number of
hashing functions and makes use of hashing internally. Creating good hash functions is difficult –
ideal hash functions try to create very random-looking numbers from whatever objects are given to
them. Making use of SDL’s hash functions ensures that you are getting good hash performance.

6.17 Algorithm

An algorithm is a series of steps necessary to carry out a process. Most algorithms operate on
data, make decisions about what to do based on that data, and transform the data into some kind
of output. SDL contains a large number of reusable algorithms. Reusable algorithms are solutions
for problems that crop up again and again in common programming situations. By learning about
SDL’s algorithms, you can avoid writing a lot of common code, and simply substitute the appropriate
reusable algorithm.

17

Chapter 7

Quick Example

Many Delphi programmers may not be familiar with generic programming. Before going into great
detail about containers, algorithms, and all the other SDL features, let’s look at an example of SDL
programming. First we’ll create a narrative sentence that describes what we want to do. Then we’ll
present SDL-based code that does it. Once you see how compact the SDL code is and how it solved
the problem, you’ll want to know more about SDL! Here is our narrative:

We have two classes of students. Some students can be in both classes. We want to find every student
whose grade is above 80 in both classes, making sure that we remove duplicates (because students
might be in both classes). Then we want to sort the students by their names, in reverse alphabetical
order. Here’s the code:

Procedure t e s t ;

Var c l a s s 1 , c l a s s 2 : DMap ;
GoodStuden t s : DArray ;
I : I n t e g e r ;
I t e r 1 , I t e r 2 : D I t e r a t o r ;

Begin
/ / f i l l our c l a s s e s w i t h random s t u d e n t s and gr ad es
c l a s s 1 : = DMap . C r e a t e ;
c l a s s 2 : = DMap . C r e a t e ;

f o r I : = 1 to 2 5 do
begin

c l a s s 1 . p u t P a i r ([Random (1 0 0) , RandomName]) ;
c l a s s 2 . p u t P a i r ([Random (1 0 0) , RandomName]) ;

end ;

g o o d S t u d e n t s : = DArray . C r e a t e ;
i t e r 1 : = c l a s s 1 . lower_bound ([8 0]) ;
i t e r 2 : = c l a s s 2 . lower_bound ([8 0]) ;
s e t I n t e r s e c t i o n I n (i t e r 1 , c l a s s 1 . f i n i s h , i t e r 2 , c l a s s 2 . f i n i s h , g o o d S t u d e n t s . f i n i s h) ;
r e v e r s e (g o o d S t u d e n t s) ;
P r i n t C o n t a i n e r (g o o d S t u d e n t s) ;
F r e e A l l ([c l a s s 1 , c l a s s 2 , GoodStuden t s]) ;

End ;

Notice how compact the code is! The key to using SDL effectively is learning about the special
algorithms it gives you and applying those algorithms in your programming.

18

Chapter 8

A Note About Namespaces

SDL uses some rather common (and short) names for certain procedures and functions. An early
design decision was taken to not prefix all SDL items with a special tag, such as SDL_. First, such a
convention requires that they be absolutely everywhere, and would seriously impact the readability
of the code. Second, Delphi’s namespace (unit) rules are quite straightforward.

We chose instead to place all SDL functionality in a single unit. Any time a namespace conflict is
discovered, simply prefix the desired SDL call with SDL. (that is SDL period).

Here is an example:

Advance (i t e r) ;
SDL . Advance (i t e r) ;

These represent exactly the same function call.

In order to avoid naming collisions for classes, we have chosen to use the letter D (as opposed to T)
to prefix all SDL class names. That is why you see DObject, DContainer, and so forth.

We hope that this is acceptable to you. If you have suggestions about how to modify this scheme,
please email us. Of course, purchasing the source edition will allow you to make any changes you
want.

19

Chapter 9

Error Handling

SDL and SuperStream throw exceptions whenever illegal conditions are encountered. SDL’s excep-
tions are rooted by SDLException. You should never rely on exception handling during the normal
course of execution in your program. Therefore, any SDLException throw by your program should
be considered a bug that must be eradicated.

Use SDL’s various testing methods to ensure that a method call will succeed before you execute it.

SDL also has a number of assertions throughout its implementation. If you purchased the source ver-
sion, you can compile a version of SDL that has these assertions enabled, which provides additional
diagnostics.

20

Chapter 10

Ten Easy SDL Lessons

Because Delphi programmers may not be familiar with SDL programming techniques, we present
ten examples here, showing how SDL’s generic algorithms and containers can be used. For each
example we’ll provide a short narrative describing the problem and then display the SDL-based code
that is a solution.

All of the lessons will use this simple object definition:

Type
TEmployee = c l a s s

Id : I n t e g e r ;
Name : S t r i n g ;
S a l a r y : I n t e g e r ;
B e n e f i t s : Boolean ;

End ;

10.1 Lesson 1 - Keeping Lists of Objects

Let’s say that we want to store a list of employee objects. This is very simple to do with Delphi’s own
TList class, and it’s something that nearly every Delphi programmer has done. We’re going to create
a list of employee objects, then print out the salary values for each one. Let’s look at the Delphi code,
and then see the equivalent SDL code.

Procedure D e l p h i L i s t ;

Var l i s t : T L i s t ;
I : I n t e g e r ;
Emp : TEmployee ;

Begin
For I : = 1 to 1 0 do
L i s t . add (TEmployee . C r e a t e) ;
For I : = 0 to l i s t . c o u n t −− 1 do

Begin
Emp : = TEmployee (l i s t [I]) ;
Write ln (‘ S a l a r y f o r ‘ , emp . name , ‘ i s ‘ , emp . s a l a r y) ;

End ;
For I : = 0 to l i s t . c o u n t −− 1 do

TObjec t (l i s t [I]) . f r e e ;
L i s t . f r e e ;

End ;

21

CHAPTER 10. TEN EASY SDL LESSONS

That’s pretty simple code. The SDL code is just as simple, and we’ll see later on how much flexibility
using SDL gives you.

Procedure SDLList ;

Var l i s t : DLis t ;
I : I n t e g e r ;
I t e r : D I t e r a t o r ;

Begin
L i s t : = DLis t . C r e a t e ;
For I : = 1 to 1 0 do

L i s t . add ([TEmployee . C r e a t e]) ;
I t e r : = l i s t . s t a r t ;
While not a tEnd (i t e r) do

Begin
Emp : = g e t O b j e c t (i t e r) as TEmployee ;
Write ln (‘ S a l a r y f o r ‘ , emp . name , ‘ i s ‘ , emp . s a l a r y) ;
Advance (i t e r) ;

End ;
ObjFree (l i s t) ;
L i s t . f r e e ;

End ;

The SDL code, while structured very slightly differently, is quite easy to read. Note the use of the
ObjFree function – you’ll learn a lot more about the many functions (or algorithms) that SDL offers
later on. Here is another way of writing the same thing, in a more SDLcentric way:

Funct ion GenEmployee (ptr : P o i n t e r) : DObject ;

Begin
R e s u l t : = Make ([TEmployee . C r e a t e]) ;

End ;

Procedure P r i n t E m p l o y e e (ptr : P o i n t e r ; c o n s t o b j : DObject) ;

Begin
With a s O b j e c t (o b j) as TEmployee do

Write ln (‘ S a l a r y f o r ‘ , name , ‘ i s ‘ , s a l a r y) ;
End ;

Procedure WriteEmployee (ptr : P o i n t e r ; c o n s t o b j : DObject) ;

Var l i s t : DLis t ;

Begin
L i s t : = DLis t . C r e a t e ;
G e n e r a t e (l i s t , 1 0 , MakeGenera tor (GenEmployee)) ;
ForEach (l i s t , MakeApply (P r i n t E m p l o y e e)) ;
ObjFree (l i s t) ;
L i s t . f r e e ;

End ;

Note how compact the WriteEmployee procedure is, and how clearly it reads. We are using three
algorithms here – generate, forEach, and ObjFree. Generate calls a generator function , which is a
function that creates DObjects. ForEach calls a function with each item in a container, and ObjFree
calls TObject.Free for each item in a container. These three algorithms are just a small part of
the many generic algorithms that are part of SDL. Using these algorithms creatively is the key to
multiplying your productivity.

22

CHAPTER 10. TEN EASY SDL LESSONS

10.2 Lesson 2 – Keeping Lists of Strings and other Atomic Types

One of the best things about SDL containers is that they don’t hold just pointers, or objects, like other
data structures for Delphi do. They can hold just about any atomic type. And you can even mix them
in the same container! Let’s say that we want to store a bunch of strings, numbers, and floating point
values in a container. Here’s how we can do that:

Procedure GenMix ;

Begin
Case Random (3) of

0 : r e s u l t : = Make ([Random (1 0)]) ;
1 : r e s u l t : = Make ([‘ s t r ‘ + IntToStr (Random (1 0))]) ;
2 : r e s u l t : = Make ([Random (1 0 0 0) / 1 0 0 0]) ;

end ;
end ;

procedure P r i n t M i x (ptr : P o i n t e r ; c o n s t o b j : DObject) ;

begin
case o b j . v t y p e of }

v t I n t e g e r : w r i t e l n (‘ I n t e g e r : ‘ , a s I n t e g e r (o b j)) ;
v t A n s i S t r i n g : w r i t e l n (‘ S t r i n g : ‘ , a s S t r i n g (o b j)) ;
v t E x t e n d e d : w r i t e l n (‘ Extended : ‘ , a s E x t e n d e d (o b j)) ;

end ;
end ;

Procedure MixEmUp ;

Var a : DArray ;

Begin
A : = DArray . C r e a t e ;
G e n e r a t e (a , 1 0 , MakeGenera tor (GenMix)) ;
ForEach (a , MakeApply (P r i n t M i x)) ;
a . f r e e ;

End ;

SDL can, in its containers, effectively handle a mixture of atomic types. Most of the time you’ll
just store one type in a container, but it’s nice to know that the flexibility is there. SDL stores the
following atomic types:

• VtInteger

• VtBoolean

• vtChar

• vtExtended

• vtString

• vtPointer

• vtPChar

• vtObject

• vtClass

23

CHAPTER 10. TEN EASY SDL LESSONS

• vtWideChar

• vtPWideChar

• vtAnsiString

• vtCurrency

• vtWideString

SDL takes care of the storage of all of these atomic types automatically – although it’s still important
for you to understand what’s going on underneath, so that you can manipulate the DObject values
correctly. You’ll learn more about this later.

10.3 Lesson 3 – Iterating with Iterators

Iterators are one of the most powerful features in the SDL library. By making extensive use of
iterators, you’re insulating yourself against changes in your program’s structures. Iterators work the
same way across all SDL containers. What follows is an example that demonstrates this, by storing
the same data in both a list structure and in an array structure, and performs the same operations on
both.

Procedure I t e r a t i o n ;

Var i t e r : D I t e r a t o r ;
Arr : DArray ;
L i s t : DLis t ;
Sum : I n t e g e r ;

Begin
Arr : = DArray . C r e a t e ;
L i s t : = DLis t . C r e a t e ;
G e n e r a t e (a r r , 1 0 , MakeGenera tor (GenEmployee)) ;
CopyTo (a r r , l i s t) ;
Sum : = 0 ;
I t e r : = a r r . s t a r t ;
While not a tEnd (i t e r) do

Begin
Inc (sum , TEmployee (g e t O b j e c t (i t e r)) . s a l a r y) ;
Advance (i t e r) ;

End ;
Write ln (‘Sum i s ‘ , sum) ;
Sum : = 0 ;
I t e r : = l i s t . s t a r t ;
While not a tEnd (i t e r) do

Begin
Inc (sum , TEmployee (g e t O b j e c t (i t e r)) . s a l a r y) ;
Advance (i t e r) ;

End ;
Write ln (‘ Sum i s ‘ , sum) ;
ObjFree (a r r) ;
Arr . f r e e ;
L i s t . f r e e ;

End ;

Note that the code to iterate over the list and the array is identical. You should also note that we only
performed ObjFree on the arr variable, and not on the list variable. This is because the two containers

24

CHAPTER 10. TEN EASY SDL LESSONS

have the same objects in them – the copyTo routine only makes copies of the pointers to the objects
(it is a ìshallowî copy of a the arr container).

This example demonstrates a use of iterators. There is another way of expressing the same operation
using generic algorithms:

Funct ion SumSalary (ptr : P o i n t e r ; c o n s t obj1 , ob j2 : DObject) : DObject ;

Begin
R e s u l t : = make ([a s I n t e g e r (ob j1) + TEmployee (a s O b j e c t (ob j2)) . S a l a r y]) ;

End ;

Procedure UseGener ic ;

Var a r r : DArray ;

Begin
Arr : = DArray . C r e a t e ;
G e n e r a t e (a r r , 1 0 , MakeGenera tor (GenEmployee)) ;
Write ln (‘ S a l a r y sum i s ‘ , a s I n t e g e r (I n j e c t (a r r , [0] , SumSalary))) ;
Arr . f r e e ;

End ;

By now you may be understanding why generic algorithms are so powerful! Let’s look at using
iterators to limit a range of an operation to a particular part of a data structure.

Procedure L i m i t G e n e r i c ;

Var a r r : DArray ;
S t a r t i n g , e nd i ng : D I t e r a t o r ;

Begin
Arr : = DArray . C r e a t e ;
G e n e r a t e (a r r , 1 0 , MakeGenera tor (GenEmployee)) ;
S t a r t i n g : = a r r . s t a r t ;
AdvanceBy (s t a r t i n g , 2) ;
Ending : = a r r . f i n i s h ;
R e t r e a t B y (ending , 2) ;
Write ln (‘ S a l a r y f o r some employees i s ‘ ,

A s I n t e g e r (I n j e c t I n (s t a r t i n g , ending , [0] , SumSalary))) ;
end ;

10.4 Lesson 4 – Using SDL instead of Delphi’s Data Structures

Delphi provides two basic data structures – TList and TStringList. Let’s look at how to use SDL
instead of these, and what the SDL equivalents offer in additional functionality.

Here’s a simple example of TStringList code:

Procedure T S t r i n g T h i n g ;

Var s l : T S t r i n g L i s t ;
I : I n t e g e r ;

Begin
Sl : = T S t r i n g L i s t . C r e a t e ;
For I : = 1 to 2 0 do

Sl . add (RandomStr ing) ;

25

CHAPTER 10. TEN EASY SDL LESSONS

Sl . s o r t ;
For I : = 0 to s l . c o u n t − 1 do

Write ln (s l [I]) ;
S l . f r e e ;

End ;

Here’s an equivalent SDL version:

Procedure SDLStr ingThing ;

Var a r r : DArray ;
I t e r : D I t e r a t o r ;

Begin
Arr : = DArray . C r e a t e ;
For I : = 1 to 2 0 do

Arr . add ([RandomStr ing]) ;
S o r t (a r r) ;
I t e r : = a r r . s t a r t ;
While i t e r a t e O v e r (i t e r) do

w r i t e l n (g e t S t r i n g (i t e r)) ;
a r r . f r e e ;

End ;

This version makes use of a neat SDL helper function iterateOver. Iterate over returns true while its
source iterator is not atEnd, and automatically advances it. You need to call iterateOver with a fresh
iterator (not one that’s already been used with iterateOver) for implementation reasons, but it’s a very
handy function.

TStringList also offers the very convenient IndexOf and Find functions. Here’s some equivalent SDL
code:

Procedure SDLFinding ;

Var a r r : DArray ;
Loc : D I t e r a t o r ;

Begin
Arr : = DArray . C r e a t e ;
G e n e r a t e (a r r , 2 0 , RandomStr ing) ;
Loc : = f i n d ([‘ t o a s t e r ’]) ; / / l i n e a r s e a r c h
I f n o t a tEnd (l o c) t h e n

W r i t e l n (‘ found i t : ‘ , g e t S t r i n g (l o c)) ;
S o r t (a r r) ;
Loc : = B i n a r y S e a r c h (a r r , [‘ t o a s t e r ’]) ; / / l o g N s e a r c h
I f not a tEnd (l o c) then

Write ln (‘ found i t : ‘ , g e t S t r i n g (l o c)) ;
Arr . f r e e ;

End ;

This code performs a search on an array using two different algorithms – find and binarySearch. Find
is a linear search through any container, looking for a value. BinarySearch relies on the container
being sorted, and performs a Log N efficiency search.

Other data structures, such as Maps, offer powerful searching and location functionality as well. Find
will always work on any container, although it may not be optimally efficient.

26

CHAPTER 10. TEN EASY SDL LESSONS

10.5 Lesson 5 – Using Maps (Key-Value Pairs

Studies have indicated that, when available, maps make up some 90% of all container class usage.
There’s a reason for that – they’re amazing useful, so much so that when you stop and analyze a
given storage requirement in an application, it’s almost always easily phrased in terms of maps.

Until SDL, there hasn’t been an effective way of storing maps. The only possibility was to use
TStringList, keep it sorted, and put objects in the Objects property. There are serious problems with
this approach, though – TStringList is based on arrays, and does not scale effectively. In addition,
data that has a bad storage pattern (already sorted) may generate extremely inefficient results when
used with TStringList. That’s not to say that TStringList is inefficient – it isn’t, but it is limited by
the underlying data store.

SDL’s mapping structures are efficient and scale well. The ordered maps, in particular, are very well
suited to just about any pattern of data access: They are red-black trees, and rebalance themselves
automatically to match the data stored. They maintain their good characteristics at all times, which
means a guaranteed Log N time for just about any operation.

Let’s create a map of employee id to employee object. This type of operation is very common – we
want to be able to quickly look up any employee given his/her employee number. We want to be able
to identify if we’re using a particular employee number. We may also want to be able to iterate over
the employees.

Procedure MapEmployees ;

Var map : DMap ;
I t e r : D I t e r a t o r ;
I : I n t e g e r ;
Emp : TEmployee ;

Begin
Map : = DMap . C r e a t e ;
For I : = 1 to 2 0 do

Begin
Emp : = TEmployee . C r e a t e ;
Map . p u t P a i r ([emp . id , emp . name]) ;

End ;

/ / l o c a t e employee w i t h i d 1001

I t e r : = map . l o c a t e ([1 0 0 1]) ;

I f a tEnd (i t e r) then
Write ln (‘ Employee doesn ’ ’ t e x i s t ’)

E l s e
W r i t e l n (‘ Employee i s ‘ , TEmployee (g e t O b j e c t (i t e r)) . name) ;

/ / remove employee 2004 − t h i s w i l l remove bo th t h e key and v a l u e .

map . remove ([2 0 0 4]) ;
I t e r : = map . s t a r t ;
While i t e r a t e O v e r (i t e r) do

W r i t e l n (TEmployee (g e t O b j e c t (i t e r)) . name) ;

/ / i t e r a t e ove r t h e employee i d s

i t e r : = map . s t a r t ;
se tToKey (i t e r) ;
w h i l e i t e r a t e O v e r (i t e r) do

27

CHAPTER 10. TEN EASY SDL LESSONS

w r i t e l n (‘ Employee ID i s ‘ , TEmployee (g e t O b j e c t (i t e r)) . i d) ;
ObjFree (map) ;
Map . f r e e ;
End ;

There are a couple of interesting things to note about this example – first, note the usage of the locate
function to find out whether a given key is in the map or not. Second, note that the remove function
can be called to take a key-value pair out of the map. Third, when we wanted to iterate over the key
part of each pair, we called setToKey on the iterator. Calling setToKey tells SDL that when we use
a getXXX function on the iterator, we want it to return the key part of a key-value pair. To set the
iterator back to returning values, call setToValue .

Let’s look at another way of mapping our employees. This time we’ll do it by name. We’re going to
create a map of names to employee objects.

Procedure MapEmployees ;

Var map : DMap ;
I t e r : D I t e r a t o r ;
I : I n t e g e r ;
Emp : TEmployee ;

Begin
Map : = DMap . C r e a t e ;
For I : = 1 to 2 0 do

Begin
Emp : = TEmployee . C r e a t e ;
Map . p u t P a i r ([emp . name , emp]) ;

End ;
I t e r : = map . l o c a t e ([‘ t e d j o n e s ’] ;
I f n o t a tEnd (i t e r) t h e n

Begin
Emp : = g e t O b j e c t (i t e r) a s TEmployee ;
W r i t e l n (‘ Found Ted Jones , whose i d i s ‘ , emp . i d ;

End ;
I t e r : = map . s t a r t ;
While i t e r a t e O v e r (i t e r) do

Begin
SetToValue (i t e r) ;
Emp : = g e t O b j e c t (i t e r) a s TEmployee ;
SetToKey (i t e r) ;
W r i t e l n (‘ Found a t key ‘ , g e t S t r i n g (i t e r) , ‘ employee i d ‘ , emp . i d) ;

End ;
ObjFree (map) ;
Map . f r e e ;

End ;

10.6 Lesson 6 – Using Sets

Sets are another very common data structure. Delphi and Object Pascal provide an elegant, albeit
limited, set feature in the language. Programmers coming from other languages often don’t make use
of sets to their fullest. SDL provides a very powerful set abstraction; one that can deal with any kind
of atomic type.

Let’s look at an example that works with a set of random numbers:

Funct ion RandomNumber (ptr : P o i n t e r) : DObject ;

28

CHAPTER 10. TEN EASY SDL LESSONS

Begin
R e s u l t : = Make ([Random (1 0 0 0)]) ;

End ;

Procedure S e t S t u f f ;

Var s : DSet ;
I , x : I n t e g e r ;

Begin
S : = DSet . C r e a t e ;
G e n e r a t e (s , 4 0 , MakeGenera tor (RandomNumber)) ;
For I : = 1 to 5 0 do}

Begin
X : = Random (1 0 0 0) ;
I f s e t . i n c l u d e s ([x]) then

Write ln (x , ‘ i s in t h e s e t ’)
E l s e

W r i t e l n (x , ‘ i s NOT i n t h e s e t ’) ;
End ;

End ;

This is an example of a very basic set usage. It builds a set full of random numbers, then uses that
set to determine if other random numbers are in the set. Let’s do something a little more sophisti-
cated. We know that Delphi supports certain set operations, like set intersection and set unions. SDL
supports these as well. Here’s an example:

Procedure SetOps ;

Var s1 , s2 : DSet ;
A : DArray ;
I t e r : D I t e r a t o r ;

Begin
S1 : = DSet . C r e a t e ;
S2 : = DSet . C r e a t e ;
A : = DArray . C r e a t e ;
G e n e r a t e (s1 , 1 0 0 , makeGenera to r (RandomNumber)) ;
G e n e r a t e (s2 , 1 0 0 , makeGenera to r (RandomNumber)) ;
S e t I n t e r s e c t i o n (s1 , s2 , a . f i n i s h) ;
I t e r : = a . s t a r t ;
While i t e r a t e O v e r (i t e r) do

Write ln (g e t I n t e g e r (i t e r) , ’ i s i n bo th s e t s . ’) ;
F r e e A l l ([s1 , s2 , a]) ;

End ;

This examples generates two sets full of random numbers, then computes the intersection between
the two sets. It then prints out the intersection set, which is the set of numbers that are in both sets.
We can easily modify this to generate the union of the two sets, which is the set of numbers that are
in both sets:

Procedure SetOps ;

Var s1 , s2 : DSet ;
A : DArray ;
I t e r : D I t e r a t o r ;

Begin
S1 : = DSet . C r e a t e ;
S2 : = DSet . C r e a t e ;
A : = DArray . C r e a t e ;
G e n e r a t e (s1 , 1 0 0 , makeGenera to r (RandomNumber)) ;

29

CHAPTER 10. TEN EASY SDL LESSONS

G e n e r a t e (s2 , 1 0 0 , makeGenera to r (RandomNumber)) ;
Se tUnion (s1 , s2 , a . f i n i s h) ;
I t e r : = a . s t a r t ;
While i t e r a t e O v e r (i t e r) do

Write ln (g e t I n t e g e r (i t e r) , ‘ i s in one of t h e s e t s . ’) ;
F r e e A l l ([s1 , s2 , a]) ;

End ;

Note that to accomplish this, we only needed to change the setIntersection to a setUnion call.

10.7 Lesson 7 – Using the Sort Algorithms

SDL provides two different bases for sorting – the sort and stableSort algorithms. Sort is a quicksort,
and stableSort is a merge sort. StableSort has the additional property that, for any items that are
equal, their order will be retained after the sort. On very large sorts, stableSort can be faster than
quickSort, at the expense of using more memory.

Funct ion NameComparator (ptr : P o i n t e r ; c o n s t obj1 , ob j2 : DObject) : I n t e g e r ;

Begin
R e s u l t : = CompareText (TEmployee (g e t O b j e c t (ob j1)) . name , TEmployee (g e t O b j e c t (ob j2)) . name)) ;

End ;

Funct ion B e n e f i t s C o m p a r a t o r (ptr : P o i n t e r ; c o n s t obj1 , ob j2 : DObject) : I n t e g e r ;

Var e1 , e2 : Boolean ;

Begin
E1 : = TEmployee (g e t O b j e c t (ob j1)) . b e n e f i t s ;
E2 : = TEmployee (g e t O b j e c t (ob j2)) . b e n e f i t s ;
I f e1 = e2 then

R e s u l t : = 0
Else

i f e1 then
R e s u l t := −1

Else
R e s u l t : = 1 ;

End ;

Procedure SortDemo ;

var a1 , a2 : DArray ;

begin
a1 : = DArray . C r e a t e ;
G e n e r a t e (1 , 1 0 , MakeGenera tor (GenEmployee)) ;
s o r t W i t h (a1 , MakeComparator (NameComparator)) ;
P r i n t C o n t a i n e r (a1) ;
a2 : = a1 . c l o n e as DArray ;
s o r t W i t h (a1 , MakeComparator (B e n e f i t s C o m p a r a t o r)) ;
s t a b l e s o r t W i t h (a2 , MakeComparator (B e n e f i t s C o m p a r a t o r)) ;
P r i n t C o n t a i n e r s ([a1 , a2]) ;
ObjFree (a1) ;
a1 . f r e e ;
a2 . f r e e ;

end ;

30

CHAPTER 10. TEN EASY SDL LESSONS

This rather long example shows the essential difference between the two sorting algorithms. We
first sort by employee id and print the employees. We then sort with both the sort algorithm and the
stableSort algorithm on the benefits field. When we print out a1 (done with sort), the employees are
no longer in employee id order, because sort scrambles them up. When we print out a2, we notice
that all the employees without benefits (benefits = false) show up first, still in employee id order,
followed by those who have benefits. This is the advantage of stable-sorting. You can sort multiple
times, and the order is retained (without violating sort concerns).

10.8 Lesson 8 – Changing Data Structures

We’ve mentioned several times that you can change data structures fairly easily with SDL. Let’s show
how this is possible.

Procedure Pr in tNumber (ptr : P o i n t e r ; c o n s t o b j : DObject) ;

Begin
Write ln (g e t I n t e g e r (o b j)) ;

End

Procedure UsingArray ;

Var con : DCon ta ine r ;
I : I n t e g e r ;

Begin
con : = DArray . C r e a t e ;
G e n e r a t e (con , 1 0 0 , MakeGenera tor (RandomNumber)) ;
For I : = 1 to 1 0 do}

con . remove ([Random (1 0 0)]) ;
ForEach (con , MakeApply (Pr in tNumber)) ;
Con . f r e e ;

End ;

Procedure U s i n g L i s t ;

Var con : DCon ta ine r ;
I : I n t e g e r ;

Begin
con : = DLis t . C r e a t e ;
G e n e r a t e (con , 1 0 0 , MakeGenera tor (RandomNumber)) ;
For I : = 1 to 1 0 do

con . remove ([Random (1 0 0)]) ;
ForEach (con , MakeApply (Pr in tNumber)) ;
Con . f r e e ;

End ;

Procedure U s i n gS e t ;

Var con : DCon ta ine r ;
I : I n t e g e r ;

Begin
con : = DSet . C r e a t e ;
G e n e r a t e (con , 1 0 0 , MakeGenera tor (RandomNumber)) ;
For I : = 1 to 1 0 do

con . remove ([Random (1 0 0)]) ;
ForEach (con , MakeApply (Pr in tNumber)) ;

31

CHAPTER 10. TEN EASY SDL LESSONS

Con . f r e e ;
End ;

Note how similar these three examples are – in fact, they’re identical except for the container con-
struction call. The code that operates on them is identical. This example is important because it
goes to the heart of why you would choose one data structure over another. Let’s follow the thought
process through these three examples.

Our first example uses arrays. Arrays are good at iteration, and very good for random access, but not
so good for addition and removal. In our example we are adding and removing, but not doing any
indexed access. This routine is not performing very well, so we might as well try to make it more
efficient.

Our second example uses a list. Lists are good at iteration, and very good at insertion and deletion
at any point. They are not particularly good at finding items. This second routine performs better
because it can quickly add and do the removal operation, but we find that remove runs slowly because
list must scan through all of its elements to find the element that needs to remove.

Since we really want that remove to run fast, we change our data structure in the third example to use
a DSet. Now every operation runs quickly. Of course, set is not the ideal structure for every situation.
Its drawbacks include larger storage requirements, and increased time (log N) for both addition and
deletion. The advanced is that instead of a O(N) time for the removal, we have a O(Log N).

10.9 Lesson 9 – Transforming Objects

One of the most powerful algorithm sets in SDL is the transform family. Transform will iterate over
one or two containers (in its unary and binary forms) and call a specified function with items from
each container. The result of the function is then stored at a destination. Let’s say that we wanted to
create a routine that would fill an array with the hash codes of all our employee names. Here’s how
we would do it (with transformUnary):

Funct ion HashName (ptr : P o i n t e r ; c o n s t o b j : DObject) : DObject ;

Begin
R e s u l t : = make ([J e n k i n s H a s h S t r i n g (TEmployee (g e t O b j e c t (o b j)) . name)]) ;

End ;

Procedure showTransformUnary ;

Var employees , h a s h c o d e s : DArray ;
Begin

Employees : = DArray . C r e a t e ;
Hashcodes : = DArray . C r e a t e ;
G e n e r a t e (employees , 2 0 , MakeGenera tor (GenEmployee)) ;
TransformUnary (employees , hashcodes , MakeUnary (HashName)) ;
F r e e A l l ([employees , h a s h c o d e s]) ;

End ;

The transform unary algorithm does all the hard work of organizing values and putting them into the
output container automatically. Let’s try another scenario, in which we want to fill an array with a
sum of the hash code and the employee id:

Funct ion SumCodes (ptr : P o i n t e r ; c o n s t obj1 , ob j2 : DObject) : DObject ;

Begin
R e s u l t : = Make ([TEmployee (g e t O b j e c t (ob j1)) . i d + a s I n t e g e r (ob j2)]) ;

End ;

32

CHAPTER 10. TEN EASY SDL LESSONS

Procedure showTrans fo rmBinary ;

Var employees , hashcodes , sums : DArray ;

Begin
Employees : = DArray . C r e a t e ;
Hashcodes : = DArray . C r e a t e ;
Sums : = DArray . C r e a t e ;
G e n e r a t e (employees , 2 0 , MakeGenera tor (GenEmployee)) ;
TransformUnary (employees , hashcodes , MakeUnary (HashName)) ;
T r a n s f o r m B i n a r y (employees , hashcodes , sums , MakeBinary (SumCodes)) ;
F r e e A l l ([employees , hashcodes , sums]) ;

End ;

Using the transform algorithms effectively can make your code very small, and very readable.

10.10 Lesson 10 – Filtering Objects

This lesson demonstrates another family of SDL functions – the filtering functions. Filtering out a
set of objects happens all the time, and SDL is here to help. Our scenario this time is that we want
to examine all of our employees and create a list of those making over $50,000 a year. We then want
to sort the list, and print out their names. SDL’s filtering and other algorithms make this very easy to
accomplish:

Funct ion I s R i c h (ptr : P o i n t e r ; c o n s t o b j : DObject) : Boolean ;

Begin
R e s u l t : = TEmployee (g e t O b j e c t (o b j)) . s a l a r y $>$ = 5 0 0 0 0 ;

End ;

Funct ion NameComparator (ptr : P o i n t e r ; c o n s t obj1 , ob j2 : DObject) : I n t e g e r ;

Begin
R e s u l t : = CompareText (TEmployee (g e t O b j e c t (ob j1)) . name , TEmployee (g e t O b j e c t (ob j2)) . name)) ;

End ;

Procedure P r i n t E m p l o y e e (ptr : P o i n t e r ; c o n s t o b j : DObject) ;

Begin
With a s O b j e c t (o b j) as TEmployee do

Write ln (‘ S a l a r y f o r ‘ , name , ‘ i s ‘ , s a l a r y) ;
End ;

Procedure F i l t e r D e m o ;

Var employees , r i c h G u y s : DArray ;
I t e r : D I t e r a t o r ;

Begin
Employees = DArray . C r e a t e W i t h (MakeComparator (NameComparator)) ;
RichGuys : = DArray . C r e a t e W i t h (MakeComparator (NameComparator)) ;
G e n e r a t e (employees , 5 0 , MakeGenera tor (GenEmployee)) ;
F i l t e r (employees , RichGuys , MakeTest (I s R i c h)) ;
S o r t (RichGuys) ;
ForEach (RichGuys , MakeApply (P r i n t E m p l o y e e)) ;
ObjFree (employees) ;
F r e e A l l ([Employees , RichGuys]) ;

33

CHAPTER 10. TEN EASY SDL LESSONS

End ;

There’s one special trick being used here. We making our arrays with CreateWith; that tells SDL
about the comparator we want to use with for the container being created. All algorithms will then
use that comparator as the default comparator.

Much of the time you can ignore comparators, because SDL puts a fairly intelligent default com-
parator on your containers. This comparator can sort on any of the atomic types. If you want to have
special ordering behavior, such as sorting on a field of an object, you need to provide SDL with a
comparator that can do the job. NameComparator in the example above does just that.

34

Chapter 11

Containers

SDL provides the programmer with 11 basic data structures, which cover a large range of program-
mer’s needs. The data structures have good characteristics: efficient implementation, consistent nam-
ing, and compatibility with generic algorithms. In addition, SDL’s data structures provide a seamless
compatibility with Delphi’s fundamental data types, as well as its object model.

SDL stores items in its data structures, which are descended from DContainer. Items are either
Delphi primitive data types, or Delphi objects. Therefore, items can be any of the following:

Integer, Boolean, Char, Extended, ShortString (old-style string), Pointer, PChar, Object, Class, WideChar,
PWideChar, String (long string), Currency, Interface, WideString.

SDL always stores items by value. This is very important! SDL does not own objects that are inside
of its containers. When you put an integer or a string into a container, the value is copied into the
container. When you put an object (pointer to object) into a container, the pointer is copied, but the
object is not; this is because SDL is storing the pointer, not the object itself

When an SDL container is destroyed, it does not free the objects that are inside of it. You can use the
ObjFree generic algorithm to do this, if you want to.

Because Delphi provides limited language support for certain constructs that would have made cre-
ating SDL easier, it is important that you understand exactly how SDL stores your items.

11.1 All About DObjects

Delphi provides us with a parameter type known as array of const. You can pass just about any
atomic type or object as part of an array of const. The receiving procedure sees the array of const
as an array of TVarRec objects. DObject (SDL’s atomic type) is defined precisely the same way as
TVarRec. When you add items to a container, you will usually use the add([item]) form. Delphi
converts this into an array of TVarRec records, and passes them to the add procedure. SDL makes
copies of all the items passed as parameter (creates new TVarRec/DObject records for them), and
adds them to the container.

If you are just using the helper functions (putInteger, getInteger, atAsInteger, etc.) you don’t need to
worry about this value copying – it will happen automatically. Periodically, for performance reasons,
you may want to interact directly with the DObject records that SDL is storing. If you do this, you
need to be aware of the rules.

DObjects can be copied directly, by assigning them to one another. If you do this, you need to ensure
that only one of the objects is cleaned up with the ClearDObject function. If you want to make a
copy, use the CopyDObject function. If you want to ensure that a DObject is empty without clearing
it, use InitDObject. SDL uses these functions internally to ensure that all items are copied around

35

CHAPTER 11. CONTAINERS

cleanly, and that no memory is leaked.

If you retrieve a DObject from a container directly, you need to clean it up when you are finished
with it by calling ClearDObject. This is because SDL has created a copy of the DObject and passed
it back to you. ClearDObject doesn’t do anything for most types, but for Strings, ShortStrings, and
Extended values it cleans up associated memory.

If you retrieve a pointer to a DObject (PDObject), you should not clean it up. If you examine the SDL
source code, you will see the SDL’s algorithms rely extensively on retrieving pointers to DObjects.
They do this for performance reasons, and also because they wish to manipulate the items in the
containers without actually knowing what the types of those items are.

SDL provides two versions of many functions that operate on containers – the first is conventionally
named (like add), and the second is the direct DObject form, prefixed by an underscore (_add).
Using the conventional form, you can pass any items in that Delphi will permit in an array of const,
which is just about all atomic types and object pointers. You may periodically use the second form
when you have a DObject already, which can sometimes happen when you are coding for extreme
efficiency. The conventional forms calls the DObject form internally, and automatically.

Another side effect of this is that SDL takes advantage of the array of const feature to allow multiple
items to be specified in calls. For example, add([25, 26, 27, 31]) will add all four numbers to its
container. SDL will internally loop through each item in the array and add it automatically. This can
be a very convenient shortcut at times.

Here is a list of functions that operate directly on DObjects:

procedure Se tDObjec t (var o b j : DObject ; v a l u e : array of c o n s t) ;
procedure I n i t D O b j e c t (var o b j : DObject) ;
procedure CopyDObject (c o n s t s o u r c e : DObject ; var d e s t : DObject) ;
procedure MoveDObject (var sou rce , d e s t : DObject) ;
procedure C l e a r D O b j e c t (var o b j : DObject) ;

11.2 Example Code

SDL comes with many examples. Please examine the SDLExamples.pas file that came with your
distribution – it’s a great guide to the usage of various SDL features and containers. It also demon-
strates many "correct" ways to use SDL.

11.3 Container hierarchy

SDL divides its containers into a simple hierarchy. Moving down the hierarchy increases the func-
tionality available in each container. This has advantages; note that if you know that a given situation
requires a mapping structure, you can assume in your code that the data structure is a descendent of
DAssociative. Then, later, you can use any of the subclasses of DAssociative to store the actual data,
and none of your code that uses the data will need to change. You can further insulate yourself by
making sure that you use iterators wherever possible.

Figure 1 shows the SDL container class hierarchy:

11.4 DIterator

Iterators (DIterator) are absolutely fundamental to working with SDL. Generic algorithms (and very
likely your algorithms) operate by manipulating and using iterators, rather than working with the
container classes directly. All containers provide methods for retrieving their starting and finishing

36

CHAPTER 11. CONTAINERS

Figure 11.1: SDL container class hierarchy:

iterators. Once you have an iterator, you can use a set of global functions to move them from item to
item, retrieve the item the iterator is positioned at, and put new items at the iterator position. All of
these operations on iterators are independent of the containers underneath them. Here is an example
of retrieving and using an iterator:

Procedure t e s t (c : DCon ta ine r) ;

var i t e r : D I t e r a t o r ;

begin
i t e r : = c . s t a r t ;
whi le not a tEnd (i t e r) do

begin
w r i t e l n (g e t I n t e g e r (i t e r)) ;
advance (i t e r) ;

end ;
end ;

This example accepts any kind of container, then prints out each item in the container, assuming that
item is an integer. Note the use of the atEnd function, which tests to see if an iterator is positioned
after the last item in the container. When the iterator is at the end of a container, you cannot read from
it (with a getXXX function). Some containers do permit you to write to an iterator that is positioned
at the end, but not all (associative containers do not support this). SDL provides a full set of getXXX
functions; one is provided for each atomic type. There are equivalent putXXX functions as well.
Here’s the list:

37

CHAPTER 11. CONTAINERS

f u n c t i o n g e t I n t e g e r (c o n s t i t e r a t o r : D I t e r a t o r) : I n t e g e r ;
f u n c t i o n g e t B o o l e a n (c o n s t i t e r a t o r : D I t e r a t o r) : Boolean ;
f u n c t i o n g e t C h a r (c o n s t i t e r a t o r : D I t e r a t o r) : Char ;
f u n c t i o n g e t E x t e n d e d (c o n s t i t e r a t o r : D I t e r a t o r) : Ex tended ;
f u n c t i o n g e t S h o r t S t r i n g (c o n s t i t e r a t o r : D I t e r a t o r) : S h o r t S t r i n g ;
f u n c t i o n g e t P o i n t e r (c o n s t i t e r a t o r : D I t e r a t o r) : P o i n t e r ;
f u n c t i o n ge tPChar (c o n s t i t e r a t o r : D I t e r a t o r) : PChar ;
f u n c t i o n g e t O b j e c t (c o n s t i t e r a t o r : D I t e r a t o r) : TObjec t ;
f u n c t i o n g e t C l a s s (c o n s t i t e r a t o r : D I t e r a t o r) : TClass ;
f u n c t i o n getWideChar (c o n s t i t e r a t o r : D I t e r a t o r) : WideChar ;
f u n c t i o n getPWideChar (c o n s t i t e r a t o r : D I t e r a t o r) : PWideChar ;
f u n c t i o n g e t S t r i n g (c o n s t i t e r a t o r : D I t e r a t o r) : S t r i n g ;
f u n c t i o n g e t C u r r e n c y (c o n s t i t e r a t o r : D I t e r a t o r) : Cur rency ;
f u n c t i o n g e t V a r i a n t (c o n s t i t e r a t o r : D I t e r a t o r) : V a r i a n t ;
f u n c t i o n g e t I n t e r f a c e (c o n s t i t e r a t o r : D I t e r a t o r) : P o i n t e r ;
f u n c t i o n g e t W i d e S t r i n g (c o n s t i t e r a t o r : D I t e r a t o r) : W i d e S t r i n g ;

Here is the equivalent list of putXXX functions:

procedure p u t (c o n s t i t e r a t o r : D I t e r a t o r ; o b j s : array of c o n s t) ;
procedure p u t I n t e g e r (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : I n t e g e r) ;
procedure p u t B o o l e a n (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : Boolean) ;
procedure pu tCha r (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : Char) ;
procedure p u t E x t e n d e d (c o n s t i t e r a t o r : D I t e r a t o r ; c o n s t v a l u e : Extended) ;
procedure p u t S h o r t S t r i n g (c o n s t i t e r a t o r : D I t e r a t o r ; c o n s t v a l u e : S h o r t S t r i n g) ;
procedure p u t P o i n t e r (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : P o i n t e r) ;
procedure putPChar (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : PChar) ;
procedure p u t O b j e c t (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : TObjec t) ;
procedure p u t C l a s s (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : TClass) ;
procedure putWideChar (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : WideChar) ;
procedure putPWideChar (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : PWideChar) ;
procedure p u t S t r i n g (c o n s t i t e r a t o r : D I t e r a t o r ; c o n s t v a l u e : S t r i n g) ;
procedure p u t C u r r e n c y (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : Cur rency) ;
procedure p u t V a r i a n t (c o n s t i t e r a t o r : D I t e r a t o r ; c o n s t v a l u e : V a r i a n t) ;
procedure p u t I n t e r f a c e (c o n s t i t e r a t o r : D I t e r a t o r ; v a l u e : P o i n t e r) ;
procedure p u t W i d e S t r i n g (c o n s t i t e r a t o r : D I t e r a t o r ; c o n s t v a l u e : W i d e S t r i n g) ;

There is also the output function, which combines the writing of a value to an iterator’s position with
advancing the iterator:

procedure o u t p u t (var i t e r a t o r : D I t e r a t o r ; o b j s : array of c o n s t) ;

Making use of these functions lets you get your atomic values in and out of DObjects easily and
quickly. SDL has a great number of these type conversion functions – make use of them! SDL has
these details done right, so you don’t have to code them yourself.

Certain containers store pairs (DMap, DMultiMap, DHashMap, DMultiHashMap). When

you retrieve an iterator from one of these containers, the iterator will walk over the values in the
key-value pairs. If you want to examine the keys, call SetToKey(iterator) . After making that call, the
getXXX functions will return the key part of the pair. To retrieve values, call SetToValue(iterator).

DIterators are records. They have been specifically designed to ensure that you can copy them freely,
return them as results from functions, and assign them between variables. Each DIterator contains
enough information to indicate which container it came from, the position it has in that container, and
certain flags indicating the status of the iterator. DIterators are exactly 16 bytes in length, and will
stay that way if possible (to accelerate reading and writing DIterators are one cache line in length).

DIterators can be grouped into classes. Each class adds more functionality. The class of an iterator
is dependent on the data structure that produced it. Certain data structures only support very simple

38

CHAPTER 11. CONTAINERS

operations; this means that their iterators are simple. Other data structures provide much fuller
iterator operation support. What follows is a description of the iterator classes.

11.4.1 Forward Iterators
The simplest iterator is one that can only move forward. You can retrieve the iterator from the
container (usually with the start function), and you can move it forward (with advance) until it is at
the end of the container. You can use the following functions with forward iterators:

advance move an iterator to the next item

getXXXX retrieve the item the iterator is positioned at

equals test if two iterators are at the same position

putXXXX store an item where the iterator is positioned

output store an item where the iterator is positioned, and advance the iterator

advanceBy advance the iterator multiple positions (retreat if negative)

atStart tests to see if an iterator is at the start of a container

atEnd test to see if an iterator is at the end of a container

getContainer retrieves the container associated with an iterator

distance determines the number of positions between two iterators

11.4.2 Bidirectional Iterators
Bidirectional iterators extend forward iterators so that they can move backwards. The following
functions work only with bidirectional (and better) iterators:

retreat moves an iterator backwards to the previous item

retreatBy moves an iterators backwards by a number of positions

getAt retrieves the item at a certain position relative to the iterator

putAt stores an item relative to the position of the iterator

11.4.3 Random Iterators
Random iterators extend bidirectional iterators to implement efficient movement of the iterator to a
random position in the container, usually indicated by an integer. The following functions work with
random iterators:

index determines the current position of the iterator, as an integer

less determines if one iterator is pointing "earlier" in a container

39

CHAPTER 11. CONTAINERS

11.4.4 Iterator Adapters
Iterators can be wrapped with adapters to provide additional or different behavior. SDL has one such
adapter DIterSkipper, which alters the behavior of the iterator it is attached to so that advances and
retreats move by a certain number of positions.

You can create your own adapters by subclassing DIterAdapter.

Iterator adapters work by substituting themselves into the iterator’s Handler field. All functions that
are executed on the iterator are routed through the Handler. The adapter can then pass the request
unmodified to the original handler (which is often the container that produced the iterator), or they
can modify the request, or do any other processing that is required.

11.5 DContainer

DContainer is the base class for all container classes in the SDL library. It defines a basic set of
public operations that all containers support, defines essential comparator functionality, and anchors
the container hierarchy with a set of abstract, virtual operations that concrete container classes must
implement. It also provides default implementations of a number of basic operations – these default
implementations are very "lowest common denominator". Subclasses may decide to implement these
operations in a more efficient way; to do so, they simply override the function with the new, improved,
and more efficient version. Here is a list of the standard methods provided by containers:

add add items to containers

clear clears all items from a container

clone creates a shallow copy of a container

contains determines if a container has a given item in it

count counts the number of times a given item occurs in a container

finish returns an iterator positioned after the last item in the container

getComparator returns the comparator currently being used by the container

isEmpty determines if the container has any items in it

maxSize returns the largest number of items the container can hold

remove erases (removes) matching items from a container

size returns the number of items in a container

start returns an iterator positioned on the first item in the container

Since all containers provide these functions, quite a bit can be done without knowing anything about
the details of a data structure being used. The DContainer interface, coupled with the iterator manip-
ulation functions, constitute a powerful abstraction of data structures away from your code.

11.5.1 Comparators
Comparators are the functions used by SDL containers to compare elements. For certain structures,
such as maps, comparators are absolutely integral to the function of the container, as they provide the
mechanism by which items are compared to one another. Other container classes, like arrays, don’t
use comparators to the same extent, but they are still present.

A comparator is defined as follows:

40

CHAPTER 11. CONTAINERS

DComparator = f u n c t i o n (c o n s t obj1 , ob j2 : DObject) : I n t e g e r of o b j e c t ;

An alternate form of comparators is defined like this:

DComparatorProc = f u n c t i o n (ptr : P o i n t e r ; c o n s t obj1 , ob j2 : DObject) : I n t e g e r ;

These two definitions are compatible with each other because they take advantage of a trick – calls
on procedures of object always have self as the first parameter. By placing a dummy pointer in
this position, we can make our comparators either closures (procedures on objects) or functions
(standalone functions).

If you are defining your own comparators, you should always ensure that the function returns less
than zero if obj1 is less than obj2, zero if obj2 equals obj2, and greater than zero if obj2 is greater
than obj1.

You will be using this most frequently when you are comparing two TObject descendents, which will
be contained inside the DObjects. You can access the objects by using asObject , like so:

ACar : = a s O b j e c t (ob j1) as TCar }

Comparators can be called very frequently, so you will want to try and make them as efficient as pos-
sible. Note that a little more knowledge about how DObjects are formed can help in this efficiency:

R e s u l t : = TCar (ob j2 . VObject) ^ . FValue − TCar (ob j1 . VObject) ^ . FValue ;

This comparator compares two TCar objects based on the their FValue fields. Note the trick of
subtracting the first from the second – this will give us a result with the correct sign for the result.

11.5.2 Constructing Containers
All containers support two forms of construction, and also have the ability to clone themselves. Here
are the two forms:

Constructor C r e a t e ; v i r t u a l ;
Constructor C r e a t e W i t h (c o m p a r a t o r : DComparator) ; v i r t u a l ;

Note that these constructors are virtual – this is very handy for algorithms that need to create auxiliary
storage and still want to work independently of container type. The plain Create constructor makes
a container that uses the standard comparator routine. This default comparator routine knows how to
compare all atomic Delphi types, such as strings, integers, floats, and so forth. It compares objects
by comparing their pointers; this is adequate for things like set membership, but is inadequate for
locating items or any kind of ordering. If you’re storing objects you’ll probably want to provide your
own comparator that works on one of the fields of the object (see the section above for an example).

Containers can also clone themselves:

Funct ion c l o n e : DCon ta ine r ; v i r t u a l ;

This functions creates a complete new copy of the container, with copies of all items inside the
container. Note that if the container had TObjects inside of it, the pointers will be copied but not the
objects themselves (a shallow copy).

Certain container classes provide additional constructor functions that are appropriate to their specific
data structures. For example, the DArray class provides a CreateSize constructor, which makes room
for a certain number of items in the array.

11.5.3 Number of Items
Every container responds to the size function, which returns the number of items in the container.
Note that you should not use the size function to iterate over containers. If you do, you’ll limit

41

CHAPTER 11. CONTAINERS

yourself to those containers that have random access iterators! Instead, retrieve an iterator with the
start function and advance it until atEnd returns true.

MaxSize returns the largest number of items that you can place in a given container type. Note that
the number returned assumes you have unlimited memory; it is more of a theoretical limit than a hard
limit.

Contains determines if the container has a certain item inside of it. Count iterates through the con-
tainer and determines the number of items that match the object specified.

11.5.4 Adding Items
Containers almost always support the add function, which puts new items into the container (notable
exceptions are the Map classes, which only accept pairs of items, in key – value form). There are
often other functions that add items to the container, but most of them are data structure specific. Use
the simple add call whenever you can – it’ll make your code as independent of the underlying data
structure as possible.

11.5.5 Removing Items
You can remove an item by calling remove. Remove operates on a value-oriented basis. The container
uses its comparator to determine if an item needs to be removed. Remove will generally only remove
one item. There are other forms of the call (RemoveN) that can be used to remove more than one
item that matches the value passed in.

If you have an iterator positioned at an item, you can use the removeAt function. This will erase the
element the iterator is over. It also invalidates the iterator.

To remove all items from a container, use the clear function. All containers support clear.Note that
calling clear does not free any TObjects that the container might be holding pointers to. You can call
the FreeAll algorithm to destroy the objects before clearing the container.

Various subclasses have additional operations for removing elements that operate in ways specific to
that data structure.

11.5.6 Retrieving Items
Container-independent retrieval and iteration is achieved by using iterators. All containers support
start and finish . Calling start retrieves an iterator positioned at the first item in the container. Finish
returns an iterator positioned just after the last element – this non-existent position is known as the
finish position. If the container is empty, the start function may return an iterator that is in the finish
position. You can test whether an iterator is at the finish position with the following function:

Funct ion AtEnd (c o n s t i t e r : D I t e r a t o r) : Boolean ;

AtEnd is often used in a construct like the following:

Procedure t e s t (con : DCon ta ine r) ;

Var i t e r : D I t e r a t o r ;
I : I n t e g e r ;

Begin
i t e r : = con . s t a r t ;
whi le not a tEnd (i t e r) do

begin
< . . do some th ing . . >
I : = g e t I n t e g e r (i t e r) ;

42

CHAPTER 11. CONTAINERS

w r i t e l n (I) ;
advance (i t e r) ;

end ;
end ;

The atEnd procedure invokes a data structure-dependent method of determining if the iterator is
positioned at the finish of the container.

11.6 DSequence

DSequence is a container that holds its items in a .. sequence! Items placed in a sequencederived con-
tainer will be retrieved in the order that they were added. DSequences maintain their ordering. Note
that a DSequence is not necessarily indexed (with an integer). Doublelinked lists are DSequence-
derived. Doublelinked lists offer rapid insertion and deletion at any point.

Some of the functions available on DSequences are index-based. These functions are not necessarily
efficiently implemented by certain kinds of DSequences. Index-based functions are generally only
efficiently performed on DVector-based containers, but it will vary. DDeques provide an intermediary
type of container that performs well under many conditions.

11.6.1 Adding Items
There are a number of additional functions for adding items that DSequence provides:

PutAt (pos , i t em)
PushBack (i t em)
P u s h F r o n t (i t em) }

11.6.2 Retrieving Items
DSequence provides the following additional methods for retrieving items from sequencetype con-
tainers:

At (pos)
AtAsXXXX(pos)
Back
F r o n t
IndexOf (i t em)
PopFron t
PopBack }

11.6.3 Removing Items
To remove items either use remove or use removeAt, which removes the item an iterator is positioned
at. Be aware that removing the item pointed to by an iterator will usually invalidate that iterator.

11.7 DVector

A DVector is a DSequence for which each item can be addressed by an integer index. DArrays and
DDeques are DVectors. DVectors are frequently slower to add and delete from in the middle of the
structure, but offer very rapid access to individual elements through an index.

These are the additional functions available with DVectors:

43

CHAPTER 11. CONTAINERS

f u n c t i o n c a p a c i t y : I n t e g e r ;
procedure e n s u r e C a p a c i t y (amount : I n t e g e r) ;
procedure i n s e r t A t I t e r (i t e r a t o r : D I t e r a t o r ; o b j s : array of c o n s t) ;
procedure i n s e r t A t (index : I n t e g e r ; o b j s : array of c o n s t) ;
procedure i n s e r t M u l t i p l e A t I t e r (i t e r a t o r : D I t e r a t o r ; c o u n t : I n t e g e r ; o b j s : array of c o n s t) ;
procedure i n s e r t M u l t i p l e A t (index : I n t e g e r ; c o u n t : I n t e g e r ; o b j s : array of c o n s t) ;
procedure i n s e r t R a n g e A t I t e r (i t e r a t o r : D I t e r a t o r ; _ s t a r t , _ f i n i s h : D I t e r a t o r) ;

procedure i n s e r t R a n g e A t (index : I n t e g e r ; _ s t a r t , _ f i n i s h : D I t e r a t o r) ;
procedure removeAt (index : I n t e g e r) ;
procedure s e t C a p a c i t y (amount : I n t e g e r) ;
procedure t r i m T o S i z e ;

11.8 DAssociative

The DAssociative classes place significantly more organization on their contents than do the other
classes. The structure of the data is directly determined by the values that are placed inside of them.
There are two major families of associative classes: Hash-based and redblack tree-based. Hash based
structures are appropriate where comparisons are slow, or there are smaller numbers of items, and
where memory is not as important. Red-black structures are appropriate where ensuring access time
is highly important, as red black trees are balanced data structures. Red-black trees have a guaranteed
upper bound on the amount of time it takes to execute their various operations.

11.8.1 Sets and Maps
Associatives are divided into two types – sets and maps. They are, in fact, implemented exactly the
same way (they both store pairs). Sets usually contain a null value in the second half of the pair, and
all their operations work on the key, by default.

Maps store pairs – they associative a given value with a given key. They are exceptionally useful
data structures – in fact, it’s estimated that 90% of all container usage in programs is map-based,
where efficient and easy to use map implementations are available. SDL provides four different map
structures: DMap, DMultiMap, DHashMap, DMultiHashMap. DMap and DMultiMap are red-black
tree based, and DHashMap and DMultiHashMap are hash-based.

The multi designator indicates whether or not the container will accept multiple values for the same
key. It is often desirable to have a container store only one value for a given key, and if another value
is set to the same key, it replaces the first value. For these situations, do not use the multi versions.

Multi-maps will allow any number of pairs with the same key to be added to the map.

Where maps associate a key with a value, sets are concerned only with the key. For sets, the value is
the key. Other than that, they generally perform exactly the same way that maps do.

11.8.2 Adding Elements
To add elements to a set, use add. To add elements to a map, use putPair or putAt. Each type of
container will ensure that you use the correct form with assertions. Note that is doesn’t make any
sense to try to add elements directly to a map (because you haven’t) supplied the value part of the
pair), and it doesn’t make any sense to add pairs to a set(because there isn’t any value).

44

CHAPTER 11. CONTAINERS

11.8.3 Finding Elements
To find if a key is in a map, use locate. To find if a value is in a set, you can also use locate. For
maps, locate returns an iterator positioned at the first item (value) that matches the key. For sets, the
iterator is positioned at the key itself (which is also the data!). Note that if you want to retrieve a
value from a map or set and you don’t know if the value is actually there, use locate. Test the iterator
that locate returns – if it’s atEnd, then the key doesn’t exist in the map, and you’ll have to add it.

11.8.4 Removing Elements
You can remove elements from maps using remove.

11.9 Container Adapters

11.10 Creating Your Own Containers

Creating your own containers is not too difficult – basically you need to override a series of virtual
functions that DContainer has defined. Some of them don’t need to overridden – there are default
implementations. Those default implementations may not be the fastest way to perform an operation
on your new data structure, so you may want to implement a custom version.

You will very likely need the SDL source code to implement your own containers, particularly if you
need to change the definition of DIterator in any way.

11.11 Frequently Asked Questions

11.11.1 How do I get the number of items in a container?
The size function returns the number of items in any container.

11.11.2 How do I add items to a container?
If you’re adding to a non-map container, use the add function:

Container .add([value]);

If you’re adding to a map-based container, use the putAt or putPair functions:

C o n t a i n e r . pu tAt ([‘ t e s t i n g ’ , ‘ a g a i n ’] , [1 , 2]) ;
C o n t a i n e r . p u t P a i r ([‘ t o a s t ’ , 1 0]) ;

11.11.3 How do I iterate over a container?
Declare an iterator, then call the container’s start function to retrieve an iterator for the container.
Loop until the iterator is at the end. Here are the two basic techniques for doing this:

Procedure Example (con : DCon ta ine r) ;

Var i t e r : D I t e r a t o r ;

Begin
I t e r : = con . s t a r t ;
While not a tEnd (i t e r) do

45

CHAPTER 11. CONTAINERS

Begin
Advance (i t e r) ;

End ;

/ / and

I t e r : = con . s t a r t ;
While i t e r a t e O v e r (i t e r) do

Begin

/ / no advancement n e c e s s a r y −− b u t don ’ t r e u s e t h e i t e r a t o r once
/ / t h e loop i s done !

End ;
end ;

11.11.4 How do I retrieve the keys from a map container?
Call SetToKey on your iterator, then retrieve values with the getXXX functions. Call SetToValue to
retrieve the value part of the key-value pair again.

11.11.5 How do I sort a sequence?
Use the sort or stableSort algorithms.

Sort (container);

Note that sorting only makes sense on sequential containers. Sorting an associative structure will
result in exceptions.

11.11.6 Why does SDL use functions instead of class members for its
algorithms

(and for iterator operations?)

There are two reasons. First, SDL iterators can operate on any class that implements the DIterHandler
interface. SDL’s containers are descended from DContainer, which inherits from DIterHandler, but
other containers or container-like classes don’t have to be. The second reason is for compatibility and
interoperability with STL and JGL. Both of those packages use the functional style of programming.
In STL, this was done to enable all algorithms to operate on C-style arrays as well as containers.
Soletta assumes that JGL was coded this way to maintain compatibility with STL.

Another effect of this is that algorithms are very cleanly separated from the container code.

11.11.7 How do I find items in a map?
Call the locate function, and test the returned iterator:

I t e r : = map . l o c a t e ([v a l u e]) ;
I f not a tEnd (i t e r) then
Write ln (‘ Found i t : ‘ , g e t I n t e g e r (i t e r)) ;

46

Chapter 12

Algorithms

SDL contains a large number of generic algorithms. These algorithms are solutions to problems that
present themselves over and over again while you’re coding. Study of this section is very important to
getting the maximum benefit out of SDL. What you need to learn to do is recognize when a common
problem occurs, then substitute the appropriate generic algorithm.

As a very simple example, we all know that a need to sort objects occurs all the time.

Rather than coding your own sort, you can call either sort or stableSort in the SDL library.

You’re probably used to calling a sort procedure in a library, rather than creating your own.

Let’s look at another situation: Let’s say you need have a bunch of employee objects and you need
to cull out the ones who are waiting for expenses to be reimbursed. The removeIf algorithm can do
this for you. Let’s say that you want to create reimbursement objects for those employees that need
to be paid. The transformUnary algorithm is ideal for this case.

12.1 A Note About Ranges

Algorithms that accept a range (_start to _end, typically) do not apply themselves to the _end element.
They stop at the position before the _end supplied. This is done so that you can conveniently pass
(container.start, container.finish) as arguments to an algorithm. It is generally illegal to do anything
at container.finish. Certain containers may permit addition or writing at this location, but not all.

12.2 Naming Conventions

Because Delphi 3 does not support overloading, SDL uses a naming convention for its functions to
achieve the same thing. For each algorithm there are often several ways to call it, depending on what
you want to achieve. Decorators are added to the algorithm name to arrive at the right call mix. The
following decorators are used:

In Perform the algorithm in a certain range (usually a _start - _end pair).

To Send the output of the algorithm to a destination (usually an _output iterator).

If Use a test to determine if the algorithm should operate on that element (usually a DTest).

With A comparator is provided that should be used in place of the container’s comparator (a DCom-
parator is passed to the algorithm).

47

CHAPTER 12. ALGORITHMS

So, for example, the routine UniqueInWithTo performs the unique algorithm, in a range, with a
comparator, to a destination. It’s defined like this:

procedure uniqueInWithTo(\ _start , \ _end , dest : DIterator ; compare : DBinaryTest);

These rules do tend to vary by algorithm, because each algorithm has a certain set of parameters that
must be provided to it. The naming convention is followed wherever possible, though.

12.3 Applying

12.3.1 forEach
procedure f o r E a c h (c o n t a i n e r : DCon ta ine r ; una ry : DApply) ;
procedure f o r E a c h I n (\ _ s t a r t , \ _end : D I t e r a t o r ; una ry : DApply) ;
procedure f o r E a c h I f (c o n t a i n e r : DCon ta ine r ; una ry : DApply ; t e s t : DTest) ;
procedure f o r E a c h I n I f (\ _ s t a r t , \ _end : D I t e r a t o r ; una ry : DApply ; t e s t : DTest) ;

Applies an unary function to each element in a container. Frequently you’ll need to pass each item
in a container to a function – perhaps you are printing, or summing the values in the container, or
you need to perform some kind of special processing on each item. The various forms of the forEach
function can do this for you. Remember that you can convert a non-closure function into the DTest
these algorithms require with the MakeTest function.

ForEach applies the unary function to each item in the container.

ForEachIn applies the unary function to each item in the range given (not including the item at the
_end position).

ForEachIf applies the test specified to each item in the container. For those items that return true on
the test, the unary function is called.

ForEachInIf applied the test to each item in the range. Those items that return true are passed to the
unary function.

12.3.2 Inject
f u n c t i o n \ _ i n j e c t (c o n t a i n e r : DCon ta ine r ; c o n s t o b j : DObject ; b i n a r y : DBinary) : DObject ;
f u n c t i o n \ _ i n j e c t I n (\ _ s t a r t , \ _end : D I t e r a t o r ; c o n s t o b j : DObject ; b i n a r y : DBinary) : DObject ;
f u n c t i o n i n j e c t (c o n t a i n e r : DCon ta ine r ; o b j : array of c o n s t ; b i n a r y : DBinary) : DObject ;
f u n c t i o n i n j e c t I n (\ _ s t a r t , \ _end : D I t e r a t o r ; o b j : array of c o n s t ; b i n a r y : DBinary) : DObject ;

The inject family moves a calculation’s results along through an entire range or container. It is
useful if, for example, you want to sum the values in a container. Inject takes a seed value (the obj
parameter). It calls binary for each object in the range or container, passing the seed value as the first
parameter and the item as the second parameter. The results of the binary function call become the
new seed. After all items have been processed, the last result is returned.

12.4 Comparing

12.4.1 Equal
f u n c t i o n e q u a l (con1 , con2 : DCon ta ine r) : Boolean ;
f u n c t i o n e q u a l I n (s t a r t 1 , end1 , s t a r t 2 : D I t e r a t o r) : Boolean ;

The equal algorithm determines if the two containers or ranges are equal to each other. They are
equal to each other if each item in the range equals the corresponding item in the other range, and
the ranges (or containers) are of equal length.

12.4.2 LexicographicalCompare

48

CHAPTER 12. ALGORITHMS

f u n c t i o n l e x i c o g r a p h i c a l C o m p a r e (con1 , con2 : DCon ta ine r) : Boolean ;
f u n c t i o n l e x i c o g r a p h i c a l C o m p a r e W i t h (con1 , con2 : DCon ta ine r ; compare : DComparator) : Boolean ;
f u n c t i o n l e x i c o g r a p h i c a l C o m p a r e I n (s t a r t 1 , end1 , s t a r t 2 , end2 : D I t e r a t o r) : Boolean ;
f u n c t i o n l e x i c o g r a p h i c a l C o m p a r e I n W i t h (s t a r t 1 , end1 , s t a r t 2 , end2 : D I t e r a t o r ; compare : DCOmparator) : Boolean ;

Lexicographical comparison compares the items in two containers or ranges one by one. The first
time a difference is found between two items, it returns less than zero if the item in the first range
or container was less than the second, or returns greater than zero if the item in the first range or
container was greater than the second. In either case, the comparison stops as soon as a difference is
detected.

12.4.3 Median
f u n c t i o n \ _median (c o n s t obj1 , obj2 , ob j3 : DObject ; compare : DComparator) : DObject ;
f u n c t i o n median (o b j s : array of c o n s t ; compare : DComparator) : DObject ;

Median returns the middle of three values, using the comparator specified. You must pass exactly
three values to it.

12.4.4 Mismatch
f u n c t i o n mismatch (con1 , con2 : DCon ta ine r) : D I t e r a t o r P a i r ;
f u n c t i o n mismatchWith (con1 , con2 : DCon ta ine r ; b t : DBina ryTes t) : D I t e r a t o r P a i r ;
f u n c t i o n mismatchIn (s t a r t 1 , end1 , s t a r t 2 : D I t e r a t o r) : D I t e r a t o r P a i r ;
f u n c t i o n mismatchInWith (s t a r t 1 , end1 , s t a r t 2 : D I t e r a t o r ; b t : DBina ryTes t) : D I t e r a t o r P a i r ;

Mismatch determines the point at which two sequences begin to differ. It returns an iterator pair, the
first of which is positioned at the position in the first sequence where the difference began, and the
second of which is positioned in the second sequence.

Mismatch returns where two containers begin to differ. If no difference is found the first part of the
iterator pair is set to con1’s atEnd.

MismatchWith returns where two containers begin to differ, using the binary test supplied.

MismatchIn returns where two sequences (ranges, identified by iterators) begin to differ. If no
difference is found, the first pair is set to end1.

MismatchInWith returns where two sequences begin to differ using the binary test supplied.

12.5 Copying

12.5.1 Copy
f u n c t i o n c o p y C o n t a i n e r (con1 , con2 : DCon ta ine r) : D I t e r a t o r ;
f u n c t i o n copyTo (con1 : DCon ta ine r ; i t e r a t o r : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n copyInTo (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n copyBackward (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r) : D I t e r a t o r ;

CopyContainer Copies the contents of con1 to con2. An iterator is returned that is positioned at the
end of con2.

CopyTo copies the contents of con1 to the iterator given. The iterator is advanced with output.

CopyInTo copies the elements in the range given to the output iterator.

CopyBackward copies the elements from the range given to the output iterator, in reverse order.

12.6 Counting

12.6.1 Count

49

CHAPTER 12. ALGORITHMS

f u n c t i o n c o u n t (con1 : DCon ta ine r ; o b j s : array of c o n s t) : I n t e g e r ;
f u n c t i o n c o u n t I n (\ _ s t a r t , \ _end : D I t e r a t o r ; o b j s : array of c o n s t) : I n t e g e r ;
f u n c t i o n c o u n t I f (con1 : DCon ta ine r ; t e s t : DTest) : I n t e g e r ;
f u n c t i o n c o u n t I f I n (\ _ s t a r t , \ _end : D I t e r a t o r ; t e s t : DTest) : I n t e g e r ;

Count determines the number of items in con1 that are equal to each item passed for objs. If more
than one item is passed to objs, the counts are summed.

CountIn counts the number of items in the range _start to _end that are equal to each item passed
for objs. If more than one item is given, the counts are summed.

CountIf Determines the number of items in the container that pass the test supplied.

CountIfIn determines the number of items in the range _start to _end that pass the test supplied.

12.7 Filling

12.7.1 Fill
procedure f i l l (con : DCon ta ine r ; o b j : array of c o n s t) ;
procedure f i l l N (con : DCon ta ine r ; c o u n t : I n t e g e r ; o b j : array of c o n s t) ;
procedure f i l l I n (\ _ s t a r t , \ _end : D I t e r a t o r ; o b j : array of c o n s t) ;

Fill fills con with the specified value (there must be only one). The currently set size of the container
is used to determine how many items are to be put there.

FillN fills con with count copies of a value. If the container isn’t large enough, it will have more
values added to its end, and will expand to the correct size.

FillIn fill the range specified with the value given.

12.7.2 Generate
procedure g e n e r a t e (con : DCon ta ine r ; c o u n t : I n t e g e r ; gen : DGenera to r) ;
procedure g e n e r a t e I n (\ _ s t a r t , \ _end : D I t e r a t o r ; gen : DGenera to r) ;
procedure g e n e r a t e T o (d e s t : D I t e r a t o r ; c o u n t : I n t e g e r ; gen : DGenera to r) ;

The generate algorithm fill containers or ranges with the output of a given generator function. The
goal of the generator function is to create DObjects. The DObjects are stored into the target.

12.8 Filtering

12.8.1 Unique
Funct ion un iq ue (con : DCon ta ine r) : D I t e r a t o r ;
Funct ion u n i q u e I n (\ _ s t a r t , \ _end : D I t e r a t o r) : D I t e r a t o r ;
Funct ion uniqueWi th (con : DCon ta ine r ; compare : DBina ryTes t) : D I t e r a t o r ;
Funct ion u n i q u e I n W i t h (\ _ s t a r t , \ _end : D I t e r a t o r ; compare : DBina ryTes t) : D I t e r a t o r ;
Funct ion uniqueTo (con : DCon ta ine r ; d e s t : D I t e r a t o r) : D I t e r a t o r ;
Funct ion un ique InTo (\ _ s t a r t , \ _end , d e s t : D I t e r a t o r) : D I t e r a t o r ;
Funct ion uniqueInWi thTo (\ _ s t a r t , \ _end , d e s t : D I t e r a t o r ; compare : DBina ryTes t) : D I t e r a t o r ;

Unique ensures that every item in the range or container is unique. If you have the sequence
(1,2,3,4,4,5,6,6,7) calling unique on that sequence will result in (1,2,3,4,5,6,7,undefined,undefined).
In addition, the algorithm returns an iterator positioned at the first undefined value.

12.8.2 Filter
procedure F i l t e r (fromCon , toCon : DCon ta ine r ; t e s t : DTest) ;
f u n c t i o n F i l t e r T o (con : DCon ta ine r ; d e s t : D I t e r a t o r ; t e s t : DTest) : D I t e r a t o r ;
f u n c t i o n F i l t e r I n T o (\ _ s t a r t , \ _end , d e s t : D I t e r a t o r ; t e s t : DTest) : D I t e r a t o r ;

50

CHAPTER 12. ALGORITHMS

Filter copies items to a destination if they pass a test. Each item passed to the test – if the test
returns true, the item is copied to the output. The filterTo and FilterInTo functions return an iterator
positioned after where the last item was written to the destination.

12.9 Finding

12.9.1 AdjacentFind
f u n c t i o n a d j a c e n t F i n d (c o n t a i n e r : DCon ta ine r) : D I t e r a t o r ;
f u n c t i o n a d j a c e n t F i n d W i t h (c o n t a i n e r : DCon ta ine r ; compare : DBina ryTes t) : D I t e r a t o r ;
f u n c t i o n a d j a c e n t F i n d I n (\ _ s t a r t , \ _end : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n a d j a c e n t F i n d I n W i t h (\ _ s t a r t , \ _end : D I t e r a t o r ; compare : DBina ryTes t) : D I t e r a t o r ;

AdjacentFind determines if there are two equal, consecutive items in a sequence. It returns an iterator
positioned at the first one if it finds two such items. If it doesn’t find any, it returns an iterator
positioned at the end of the container if given a container, or at the end of the range if given the
range.

12.9.2 BinarySearch
f u n c t i o n b i n a r y S e a r c h (con : DCon ta ine r ; o b j : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n b i n a r y S e a r c h I n (\ _ s t a r t , \ _end : D I t e r a t o r ; o b j : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n b i n a r y S e a r c h W i t h (con : DCon ta ine r ; compare : DComparator ; o b j : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n b i n a r y S e a r c h I n W i t h (\ _ s t a r t , \ _end : D I t e r a t o r ; compare : DComparator ; o b j : array of c o n s t) : D I t e r a t o r ;

BinarySearch relies on the fact that the sequence it is given is sorted. It will very efficiently locate an
item in a sorted sequence. It returns an iterator positioned at the item.

12.9.3 Detect
f u n c t i o n d e t e c t W i t h (c o n t a i n e r : DCon ta ine r ; compare : DTest) : D I t e r a t o r ;
f u n c t i o n d e t e c t I n W i t h (\ _ s t a r t , \ _end : D I t e r a t o r ; compare : DTest) : D I t e r a t o r ;

Detect locates the first item in a container or range for which the test returns true. It returns an iterator
positioned at the end if such an item is not found.

12.9.4 Every
f u n c t i o n e v e r y (c o n t a i n e r : DCon ta ine r ; t e s t : DTest) : Boolean ;
f u n c t i o n e v e r y I n (\ _ s t a r t , \ _end : D I t e r a t o r ; t e s t : DTest) : Boolean ;

Every determines if the test returns true for every element in the container or range. It does a giant
AND of test for every element in the range. It short-circuits, so the first time the test returns false, it
will return.

12.9.5 Find
f u n c t i o n f i n d (c o n t a i n e r : DCon ta ine r ; o b j : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n f i n d I n (\ _ s t a r t , \ _end : D I t e r a t o r ; o b j : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n f i n d I f (c o n t a i n e r : DCon ta ine r ; t e s t : DTest) : D I t e r a t o r ;
f u n c t i o n f i n d I f I n (\ _ s t a r t , \ _end : D I t e r a t o r ; t e s t : DTest) : D I t e r a t o r ;

Locate an object in a container, returning an iterator positioned where the object was found. If no
object is found, an atEnd iterator is returned. The third and fourth form use a test instead of the
container’s comparator.

12.9.6 Some
f u n c t i o n some (c o n t a i n e r : DCon ta ine r ; t e s t : DTest) : Boolean ;
f u n c t i o n someIn (\ _ s t a r t , \ _end : D I t e r a t o r ; t e s t : DTest) : Boolean ;

51

CHAPTER 12. ALGORITHMS

Some determines if any of the items in a container return true for the given test. Some short-circuits,
so the first item that returns true causes the algorithm to return true.

12.10 Freeing and Deleting

12.10.1 ObjFree
procedure o b j F r e e (c o n t a i n e r : DCon ta ine r) ;
procedure o b j F r e e I n (\ _ s t a r t , \ _end : D I t e r a t o r) ;

ObjFree assumes that every item in a container is an object. It calls TObject.Free on each item.

12.10.2 ObjDispose
procedure o b j D i s p o s e (c o n t a i n e r : DCon ta ine r) ;
procedure o b j D i s p o s e I n (\ _ s t a r t , \ _end : D I t e r a t o r) ;

ObjDispose assumes that every item in a container or range is a pointer to a heap allocated object
(allocated with GemMem); it calls FreeMem on the pointer.

12.10.3 ObjFreeKeys
procedure ob jF reeKeys (a s s o c : D A s s o c i a t i v e) ;

ObjFreeKeys performs the same function as ObjFree, but does it on the keys in the range, not on the
values. This is useful if you are have a map that maps objects to some other type.

12.11 Hashing

12.11.1 OrderedHash
f u n c t i o n orde redHash (c o n t a i n e r : DCon ta ine r) : I n t e g e r ;
f u n c t i o n o r d e r e d H a s h I n (\ _ s t a r t , \ _end : D I t e r a t o r) : I n t e g e r ;

During coding, it is often convenient to convert values, or a range of memory, into a single numeric
value that has almost-random characteristics. This can be used to rapidly identify objects, or to sort
objects when no other alternatives are available. SDL provides the orderedHash algorithm to create
these numeric codes. The ordered hash algorithm has the addition characteristic that the hash code
produced will be sensitive to and affected by the order of the items in the container that’s being
hashed. If this level of sensitivity is not required, use the unorderedHash algorithm, which is slightly
more efficient.

12.11.2 UnorderedHash
f u n c t i o n unorde redHash (c o n t a i n e r : DCon ta ine r) : I n t e g e r ;
f u n c t i o n u n o r d e r e d H a s h I n (\ _ s t a r t , \ _end : D I t e r a t o r) : I n t e g e r ;

The unorderedHash algorithm is identical to the orderedHash algorithm, except that the hash code
produced is not sensitive to the order of the items in the container or range. This is slightly more
efficient to calculate than the orderedHash.

12.12 Removing

12.12.1 Remove
f u n c t i o n remove (c o n t a i n e r : DCon ta ine r ; o b j s : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n removeIn (\ _ s t a r t , \ _end : D I t e r a t o r ; o b j s : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n removeTo (c o n t a i n e r : DCon ta ine r ; o u t p u t : D I t e r a t o r ; o b j s : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n removeInTo (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r ; o b j s : array of c o n s t) : D I t e r a t o r ;

52

CHAPTER 12. ALGORITHMS

Removes all matching items from the container or range it is given. The size of the container doesn’t
change; the remove family of functions return an iterator positioned at the end of the new sequence.

12.12.2 removeCopy
f u n c t i o n removeCopy (sou rce , d e s t i n a t i o n : DCon ta ine r ; o b j s : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n removeCopyTo (s o u r c e : DCon ta ine r ; o u t p u t : D I t e r a t o r ; o b j s : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n removeCopyIn (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r ; o b j s : array of c o n s t) : D I t e r a t o r ;
f u n c t i o n removeCopyIf (sou rce , d e s t i n a t i o n : DCon ta ine r ; t e s t : DTest) : D I t e r a t o r ;
f u n c t i o n removeCopyIfTo (s o u r c e : DCon ta ine r ; o u t p u t : D I t e r a t o r ; t e s t : DTest) : D I t e r a t o r ;
f u n c t i o n removeCopyI f In (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r ; t e s t : DTest) : D I t e r a t o r ;

The removeCopy algorithm copies a sequence of items from one location to another, removing any
matching items as it goes.

12.12.3 removeIf
f u n c t i o n r e m o v e I f (c o n t a i n e r : DCon ta ine r ; t e s t : DTest) : D I t e r a t o r ;
f u n c t i o n r e m o v e I f I n (\ _ s t a r t , \ _end : D I t e r a t o r ; t e s t : DTest) : D I t e r a t o r ;
f u n c t i o n removeIfTo (c o n t a i n e r : DCon ta ine r ; o u t p u t : D I t e r a t o r ; t e s t : DTest) : D I t e r a t o r ;
f u n c t i o n r emoveI f InTo (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r ; t e s t : DTest) : D I t e r a t o r ;

The removeIf and removeIfIn algorithms remove any items from a sequence for which the test returns
true. RemoveIfTo and RemoveIfInTo copy the sequence of items, removing any for which the test
returned true.

12.13 Replacing

12.13.1 Replace
f u n c t i o n r e p l a c e (c o n t a i n e r : DCon ta ine r ; ob j s1 , o b j s 2 : array of c o n s t) : I n t e g e r ;
f u n c t i o n r e p l a c e I n (\ _ s t a r t , \ _end : D I t e r a t o r ; ob j s1 , o b j s 2 : array of c o n s t) : I n t e g e r ;

Replaces all items in the container or sequence that match obj1 with obj2. If you pass more than one
object for objs1 and objs2, the algorithms runs multiple times, doing each pair of objects.

12.13.2 ReplaceCopy
f u n c t i o n r e p l a c e C o p y (con1 , con2 : DCon ta ine r ; ob j s1 , o b j s 2 : array of c o n s t) : I n t e g e r ;
f u n c t i o n r ep laceCopyTo (c o n t a i n e r : DCon ta ine r ; o u t p u t : D I t e r a t o r ; ob j s1 , o b j s 2 : array of c o n s t) : I n t e g e r ;
f u n c t i o n r ep l aceCopyI nTo (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r ; ob j s1 , o b j s 2 : array of c o n s t) : I n t e g e r ;
f u n c t i o n r e p l a c e C o p y I f (con1 , con2 : DCon ta ine r ; t e s t : DTest ; o b j s : array of c o n s t) : I n t e g e r ;
f u n c t i o n r e p l a c e C o p y I f T o (c o n t a i n e r : DCon ta ine r ; o u t p u t : D I t e r a t o r ; t e s t : DTest ; o b j s : array of c o n s t) : I n t e g e r ;
f u n c t i o n r e p l a c e C o p y I f I n T o (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r ; t e s t : DTest ; o b j s : array of c o n s t) : I n t e g e r ;

ReplaceCopy copies a sequence to a new container or iterator, replacing each item that matches obj1
with obj2 as it copies. The IF variants use test to determine if the replacement should happen or not.

12.13.3 ReplaceIf
f u n c t i o n r e p l a c e I f (c o n t a i n e r : DCon ta ine r ; t e s t : DTest ; o b j s : array of c o n s t) : I n t e g e r ;
f u n c t i o n r e p l a c e I f I n (\ _ s t a r t , \ _end : D I t e r a t o r ; t e s t : DTest ; o b j s : array of c o n s t) : I n t e g e r ;

ReplaceIf replaces items for which the test returns true with objs. You must pass only one item for
objs.

12.14 Reversing

12.14.1 Reverse

53

CHAPTER 12. ALGORITHMS

procedure r e v e r s e (c o n t a i n e r : DCon ta ine r) ;
procedure r e v e r s e I n (\ _ s t a r t , \ _end : D I t e r a t o r) ;

Reverse reverses the order of items in a sequence. For example, the sequence (1,2,3,4,5) becomes
(5,4,3,2,1).

12.14.2 ReverseCopy
procedure r e v e r s e C o p y (con1 , con2 : DCon ta ine r) ;
procedure r eve r seCopyTo (c o n t a i n e r : DCon ta ine r ; o u t p u t : D I t e r a t o r) ;
procedure r eve r s eCopyI nTo (\ _ s t a r t , \ _end , o u t p u t : D I t e r a t o r) ;

ReverseCopy copies a sequence to a new location, reversing it during the copy.

12.15 Rotating

12.15.1 Rotate
procedure r o t a t e (f i r s t , middle , l a s t : D I t e r a t o r) ;

Rotate performs a right rotation on a sequence. The first item will end up at position middle, the
second at middle + 1, and so forth.

12.15.2 RotateCopy
f u n c t i o n r o t a t e C o p y (f i r s t , middle , l a s t , o u t p u t : D I t e r a t o r) : D I t e r a t o r ;

RotateCopy does the same thing as rotate except that the original sequence is unchanged – the rotated
result is written to a new location.

12.16 Set Operations

12.16.1 Includes
f u n c t i o n i n c l u d e s (mas te r , s u b s e t : DCon ta ine r) : Boolean ;
f u n c t i o n i n c l u d e s W i t h (mas te r , s u b s e t : DCon ta ine r ; c o m p a r a t o r : DComparator) : Boolean ;
f u n c t i o n i n c l u d e s I n (s t a r t M a s t e r , f i n i s h M a s t e r , s t a r t S u b s e t , f i n i s h S u b s e t : D I t e r a t o r) : Boolean ;
f u n c t i o n i n c l u d e s I n W i t h (s t a r t M a s t e r , f i n i s h M a s t e r , s t a r t S u b s e t , f i n i s h S u b s e t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : Boolean ;

Includes determines if a master set includes an entire sub set. Includes relies on the two containers
or ranges being sorted. If set 1 is (1,2,3,4,5) and set 2 is (2,3,4), includes returns true. If set 1 is
(1,2,3,4,5) and set 2 is (2,3,10), includes returns false.

12.16.2 SetDifference
f u n c t i o n s e t D i f f e r e n c e (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n s e t D i f f e r e n c e I n (s t a r t 1 , f i n i s h 1 , s t a r t 2 , f i n i s h 2 , o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n s e t D i f f e r e n c e W i t h (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : D I t e r a t o r ;
f u n c t i o n s e t D i f f e r e n c e I n W i t h (s t a r t 1 , f i n i s h 1 , s t a r t 2 , f i n i s h 2 , o u t p u t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : D I t e r a t o r ;

SetDifference finds the set of items that are in the first range but not in the second range. It

sends this new set of items to an output iterator. SetDifference relies on both ranges being

sorted. If set 1 is (1,2,3,4,5) and set 2 is (2,3,4), setDifference returns (1,5).

12.16.3 SetIntersection
f u n c t i o n s e t I n t e r s e c t i o n (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n s e t I n t e r s e c t i o n I n (s t a r t 1 , f i n i s h 1 , s t a r t 2 , f i n i s h 2 , o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n s e t I n t e r s e c t i o n W i t h (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : D I t e r a t o r ;
f u n c t i o n s e t I n t e r s e c t i o n I n W i t h (s t a r t 1 , f i n i s h 1 , s t a r t 2 , f i n i s h 2 , o u t p u t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : D I t e r a t o r ;

54

CHAPTER 12. ALGORITHMS

SetIntersection finds the set of items that are in both containers or ranges. It sends this new list of
items to an output iterator. SetIntersection relies on both ranges being sorted. If set 1 is (1,2,3,4,5)
and set 2 is (2,3,4,10), setIntersection returns (2,3,4).

12.16.4 SetSymmetricDifference
f u n c t i o n s e t S y m m e t r i c D i f f e r e n c e (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n s e t S y m m e t r i c D i f f e r e n c e I n (s t a r t 1 , f i n i s h 1 , s t a r t 2 , f i n i s h 2 , o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n s e t S y m m e t r i c D i f f e r e n c e W i t h (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : D I t e r a t o r ;
f u n c t i o n s e t S y m m e t r i c D i f f e r e n c e I n W i t h (s t a r t 1 , f i n i s h 1 , s t a r t 2 , f i n i s h 2 , o u t p u t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : D I t e r a t o r ;

SetSymmetricDifference finds the items that are not in both sets. It relies on both ranges being sorted.
If set 1 is (1,2,3,4,5) and set 2 is (4,5,6,7,8), setSymmetricDifference returns (1,2,3,6,7,8);

12.16.5 SetUnion
f u n c t i o n s e t U n i o n (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n s e t U n i o n I n (s t a r t 1 , f i n i s h 1 , s t a r t 2 , f i n i s h 2 , o u t p u t : D I t e r a t o r) : D I t e r a t o r ;
f u n c t i o n se tUn ionWi th (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : D I t e r a t o r ;
f u n c t i o n s e t U n i o n I n W i t h (s t a r t 1 , f i n i s h 1 , s t a r t 2 , f i n i s h 2 , o u t p u t : D I t e r a t o r ; c o m p a r a t o r : DComparator) : D I t e r a t o r ;

SetUnion finds the items that are in both sequences. It relies on both ranges being sorted. Only one
copy of each value will be present in the output set. If set 1 is (1,2,3,4,5) and set 2 is (4,5,6,7,8),
setUnion will return (1,2,3,4,5,6,7,8).

12.17 Shuffling

12.17.1 RandomShuffle
procedure r a n d o m S h u f f l e (c o n t a i n e r : DCon ta ine r) ;
procedure r a n d o m S h u f f l e I n (\ _ s t a r t , \ _end : D I t e r a t o r) ;

RandomShuffle randomly moves around elements in the container, just like shuffling a deck of cards.

12.18 Sorting

12.18.1 Sort
procedure s o r t (s e q u e n c e : DSequence) ;
procedure s o r t I n (\ _ s t a r t , \ _end : D I t e r a t o r) ;
procedure s o r t W i t h (s e q u e n c e : DSequence ; c o m p a r a t o r : DComparator) ;
procedure s o r t I n W i t h (\ _ s t a r t , \ _end : D I t e r a t o r ; c o m p a r a t o r : DComparator) ;

Sort sorts the items in the container or range it is given. This sort is not stable; that is, the ordering
the elements have in the container before the sort algorithm is run have nothing to do with the order
after the sort is run. Sort is based on a QuickSort.

12.18.2 StableSort
procedure s t a b l e s o r t (s e q u e n c e : DSequence) ;
procedure s t a b l e s o r t I n (\ _ s t a r t , \ _end : D I t e r a t o r) ;
procedure s t a b l e s o r t W i t h (s e q u e n c e : DSequence ; c o m p a r a t o r : DComparator) ;
procedure s t a b l e s o r t I n W i t h (\ _ s t a r t , \ _end : D I t e r a t o r ; c o m p a r a t o r : DComparator) ;

StableSort sorts the items in the container or range, an maintains (without violating sort ordering) the
current order of the items in the container. StableSort is based on a MergeSort.

12.19 swapping

12.19.1 IterSwap

55

CHAPTER 12. ALGORITHMS

procedure i t e r S w a p (i t e r 1 , i t e r 2 : D I t e r a t o r) ;

IterSwaps swaps the values two iterators are positioned at.

12.19.2 SwapRanges
procedure swapRanges (con1 , con2 : DCon ta ine r) ;
procedure swapranges InTo (s t a r t 1 , end1 , s t a r t 2 : D I t e r a t o r) ;

SwapRanges swaps the values in two ranges – the values in the first range will move to the second
range, and the values in the second range will move to the first.

12.20 Transforming

12.20.1 Collect
f u n c t i o n c o l l e c t (c o n t a i n e r : DCon ta ine r ; una ry : DUnary) : DCon ta ine r ;
f u n c t i o n c o l l e c t I n (\ _ s t a r t , \ _end : D I t e r a t o r ; una ry : DUnary) : DCon ta ine r ;

Collect applies the unary function to each object in the container, storing the results in a new container
(that is constructed by the function) that is of the same type as the existing one.

12.20.2 TransformBinary
procedure t r a n s f o r m B i n a r y (con1 , con2 , o u t p u t : DCon ta ine r ; b i n a r y : DBinary) ;
f u n c t i o n t r a n s f o r m B i n a r y T o (con1 , con2 : DCon ta ine r ; o u t p u t : D I t e r a t o r ; b i n a r y : DBinary) : D I t e r a t o r ;
f u n c t i o n t r a n s f o r m B i n a r y I n T o (s t a r t 1 , f i n i s h 1 , s t a r t 2 , o u t p u t : D I t e r a t o r ; b i n a r y : DBinary) : D I t e r a t o r ;

TransformBinary applies a binary function to pairs of objects from con1 and con2, and stores the
result into the output area. con1 and con2 need to have the same number of objects in them.

12.20.3 TransformUnary
procedure t r a n s f o r m U n a r y (c o n t a i n e r , o u t p u t : DCon ta ine r ; una ry : DUnary) ;
f u n c t i o n t r an s fo rmUnaryTo (c o n t a i n e r : DCon ta ine r ; o u t p u t : D I t e r a t o r ; una ry : DUnary) : D I t e r a t o r ;
f u n c t i o n t r a n s f o r m u n a r y I n T o (\ _ s t a r t , \ _ f i n i s h , o u t p u t : D I t e r a t o r ; una ry : DUnary) : D I t e r a t o r ;

TransformUnary applies a unary function to each item in a container or range, and stored

the results in an output area.

56

Chapter 13

Utility Functions

SDL provides a number of utility functions to make using the library easier. These mostly revolve
around converting atomic types in and out of DObjects, as well as functions to aid in common pro-
gramming situations.

13.1 Atomic Converters

SDL provides a series of functions that can aid you in moving atomic values into and out of the
DObject structure, with and without iterators. Each of these functions has many variants, named for
the atomic types. XXXX can be any of the following:

Integer, Boolean, Char, Extended, ShortString, Pointer, PChar, Object, Class, WideChar,

PWideChar, String, Currency, WideString

Function AsXXXX(const obj : DObject) : XXXX;

Converts a DObject to the specified type, leaving the original value in place.

Function ToXXXX(const obj : Dobject) : XXXX;

Converts a DObject to the specified type, clearing the original.

Procedure SetXXXX(var obj : Dobject; const value : XXXX);

Sets the value of an already initialized DObject to a new value. The old value is cleared and freed.

Function GetXXXX(const iter : DIterator) : XXXX;

Retrieves the DObject at the iterator’s position as an XXXX.

Procedure PutXXXX(const iter : DIterator , const value : XXXX);

Writes the value to the iterator’s current position. The old value is cleared and replaced with the new
one.

13.2 Iterator Helpers

function MakePair(const ob1 , ob2 : DObject) : DPair;

MakePair copies two DObjects into a pair object, which it returns. You need to make sure that you
clean up the pair object that is returned.

function MakeRange(s,f : DIterator) : DRange;

MakeRange converts to iterators into a range. Sometimes it’s easier to manipulate ranges directly,

57

CHAPTER 13. UTILITY FUNCTIONS

inside a DRange structure. Certain algorithms will return ranges as DRanges.

13.3 Hashing

function hashCode(const obj : DObject) : Integer ;

Return a hash value for a DObject. The object is hashed according to its type.

function JenkinsHashInteger (value : Integer) : Integer ;

Return a hash value for an integer.

f u n c t i o n J e n k i n s H a s h B u f f e r (c o n s t b u f f e r ; l e n g t h : I n t e g e r ; i n i t V a l : I n t e g e r) : I n t e g e r ;

Return a hash value for a series of bytes. Pass the variable you want to has as buffer. Be careful to
note that buffer is an untyped const. If you have a pointer to some variable, and you want to hash the
variable, use the n̂otation.

function JenkinsHashString (const s : String) : Integer ;

Return the hash value for a string.

function JenkinsHashSingle(s : Single) : Integer ;

Return the hash value for a single value.

function JenkinsHashDouble(d : Double) : Integer;

Return the hash value for a double value.

13.4 DObject Helpers

SDL provides a number of helper functions for getting objects into and out of DObjects.

You need to pay some attention to the lifetimes and initialization states of your DObjects.

In particular, you need to make sure that you never store a string value to an uninitialized DObject.
Most of the time, if you store a value to an uninitialized DObject, it won’t make much difference.
Delphi does reference-counted strings, though, so storing a string value to a random piece of memory
can cause an access violation.

There are two easy ways to get around this. The first is not to use the SetString function, unless
you’re sure the DObject in question has already been initialized. The second is to use the Make
function or the CopyDObject function, which ensure that the destination is initialized before storing
a value.

You need to be particularly aware of this when you are creating callbacks that return DObjects. The
result variable (which is often a DObject), is not initialized when your procedure gets it. You need to
make sure you clear result, or assign it with the Make function or the CopyDObject function.

Function Make(value : array of const) : DObject;

Creates a new DObject, based on the value you supply. You are responsible for cleaning up the
storage of this DObject, if necessary. This function is frequently used to return the results of callback
functions.

procedure InitDObject(var obj : DObject);

Empties a DObject, ensuring that it is ready to receive whatever you want to put in it. The previous
contents of the object are not freed or cleared. If you want to do that, use ClearDObject, or one of
the SetObjectXXX family.

procedure CopyDObject(const source : DObject; var dest : DObject);

58

CHAPTER 13. UTILITY FUNCTIONS

Copies a DObject from source to dest. The destination is initialized before writing the new value.
Any object that was in destination is lost, and is not cleared.

procedure MoveDObject(var source, dest : DObject);

Moves a DObject from the source to the dest. The destination is initialized before writing the new
value. Any object that was in the destination is lost. After a copy, the source is cleared.

procedure ClearDObject(var obj : DObject);

Frees any storage and clears the object, resetting it to an initialized state. The DObject is then ready
to receive another value.

procedure SetDObject(var obj : DObject; value : array of const);

Sets a DObject to any atomic value. Clears the DObject first, releasing any storage currently being
used by the DObject. Do not call any function in the SetXXX family unless you are sure that the
target DObject has been initialized.

procedure Swap(var obj1, obj2 : DObject);

Swaps the values of any two DObjects.

13.5 Morphing Closures

SDL can use BOTH closures (procedures of object) and regular functions for those places in

which it needs to call your code. It does this by taking advantage of the way that Delphi’s object
model works. Let’s look at an example:

DComparator = function(const obj1 , obj2 : DObject) : Integer of object ;

That’s the official definition of DComparator. SDL also provides the following:

DComparatorProc = function(ptr : Pointer ; const obj1 , obj2 : DObject) : Integer ;

These two definitions amount to the same call in Delphi. On the closure (the first one), Delphi passes
an _invisible parameter_, self, as the first parameter to the call. Self is always a pointer. In the second
one, we are making the pointer an explicit part of the call.

SDL also provides these:

f u n c t i o n MakeComparator (p roc : DComparatorProc) : DComparator ;
begin

TMethod (r e s u l t) . d a t a : = n i l ;
TMethod (r e s u l t) . code : = @proc ;

end ;

f u n c t i o n MakeComparatorEx (p roc : DComparatorProc ; ptr : P o i n t e r) : DComparator ;
begin

TMethod (r e s u l t) . d a t a : = ptr ;
TMethod (r e s u l t) . code : = @proc ;

end ;

We can then do something like this:

f u n c t i o n MyComparator (ptr : P o i n t e r ; c o n s t obj1 , ob j2 : DObject) : I n t e g e r ;

begin

. . .

end ;

59

CHAPTER 13. UTILITY FUNCTIONS

x : = DArray . C r e a t e W i t h (MakeComparator (MyComparator)) ;

or

x : = DArray . C r e a t e W i t h (MakeComparatorEx (MyComparator ,
a \ _ p o i n t e r \ _ i \ _want \ _ t o \ _ p a s s)) ;

Now – why do we want all this? Simple – most Delphi code is done in methods on forms or on
objects. SDL needs to have a way to make callbacks onto methods on those objects, and that led to
the requirement that closures be part of the definitions. But, with the techniques outlined above, we
can also use regular functions as callbacks, which are very useful for putting small bits of code right
near where they’re used.

f u n c t i o n MakeComparator (p roc : DComparatorProc) : DComparator ;
f u n c t i o n MakeEquals (p roc : DEqualsProc) : DEquals ;
f u n c t i o n MakeTest (p roc : DTes tProc) : DTest ;
f u n c t i o n MakeApply (p roc : DApplyProc) : DApply ;
f u n c t i o n MakeUnary (p roc : DUnaryProc) : DUnary ;
f u n c t i o n MakeBinary (p roc : DBinaryProc) : DBinary ;
f u n c t i o n MakeHash (p roc : DHashProc) : DHash ;
f u n c t i o n MakeGenera tor (p roc : DGene ra to rP roc) : DGenera to r ;

These are the definitions for the functions that can create closures out of regular procedures.

f u n c t i o n MakeComparatorEx (p roc : DComparatorProc ; ptr : P o i n t e r) : DComparator ;
f u n c t i o n MakeEqualsEx (p roc : DEqualsProc ; ptr : P o i n t e r) : DEquals ;
f u n c t i o n MakeTestEx (p roc : DTes tProc ; ptr : P o i n t e r) : DTest ;
f u n c t i o n MakeApplyEx (p roc : DApplyProc ; ptr : P o i n t e r) : DApply ;
f u n c t i o n MakeUnaryEx (p roc : DUnaryProc ; ptr : P o i n t e r) : DUnary ;
f u n c t i o n MakeBinaryEx (p roc : DBinaryProc ; ptr : P o i n t e r) : DBinary ;
f u n c t i o n MakeHashEx (p roc : DHashProc ; ptr : P o i n t e r) : DHash ;
f u n c t i o n MakeGeneratorEx (p roc : DGene ra to rP roc ; ptr : P o i n t e r) : DGenera to r ;

Sometimes it’s useful to be able to pass a pointer to the procedure you’re making a closure for. The
Ex versions of these functions allow you to do just that. The pointer you put in will be passed to your
procedure as its first parameter.

13.6 Printing

SDL has some built-in support for printing the contents of containers. This is often useful during the
debugging phase of developing your application. SDL knows how to print the basic types, but if you
want it to print your own objects, you’ll need to register a printing routine. The printing routine has
this signature:

DPrinterProc = function (obj : TObject) : String ;

After you create a routine with that signature, you’ll need to call the following routine to register it
with SDL:

procedure RegisterSDLPrinter(cls : TClass ; prt : DPrinterProc);

Pass the class object in as the first parameter, like this:

Funct ion M y P r i n t e r (o b j : TObjec t) : S t r i n g ;

Begin
With o b j as TMyClass do

. . .

60

CHAPTER 13. UTILITY FUNCTIONS

end ;

R e g i s t e r S D L P r i n t e r (TMyClass , M y P r i n t e r) ; }

SDL provides a helper function to convert a DObject into a printable string. This function will call
any registered printing functions for objects that it encounters.

function PrintString (const obj : DObject) : String ;

Printing is often done in conjunction with the forEach routine, which can apply a printing function
to each item in a container. SDL provides the ApplyPrint routine, which can be passed directly to
forEach for a container or range, and invokes PrintString to get the strings it needs to write to the
console.

procedure ApplyPrint(ptr : Pointer ; const obj : DObject);

The ApplyPrintLN variant puts a linefeed after it prints each item. This is nice when you’re print
objects.

procedure ApplyPrintLN(ptr : Pointer ; const obj : DObject);

61

Chapter 14

Debugging Support

SDL contains numerous assertions throughout its code. In the binary release of the library, these
assertions are turned off. If you have the source version, you can recompile the library and turn the
assertions on. They will catch many of the common problems that you will encounter while using
SDL.

Any time that SDL throws an exception, you can expect that something has gone quite wrong. SDL
does not throw exceptions during the course of any normal activity; for this reason, you never need to
turn off ìbreak on exceptionî while working with SDL. Most SDL exceptions will contain a message
indicating what went wrong.

62

Chapter 15

Persistence with SuperStream

SuperStream is SDL’s companion library. It provides simple, powerful object streaming capabilities.
The object streams support atomic types, objects, inheritance and permits the storage and loading of
multiple versions of objects. Object graphs (arbitrarily connected sets of objects) are also supported,
as an option. SuperStream’s primary advantages over other streaming systems are:

• Ease of use

• Nested object support

• Source not required to stream an object’s data

• Intelligent, atomic-type aware transfer mechanism

• Object versioning

• SuperStream can effectively save and load SDL containers, as well.

To use SuperStream, you need only provide a simple Transfer Function for each of your classes.

15.1 Basic Concepts

15.1.1 Stream
Streams are Delphi’s official way of handling most I/O. Delphi provides a number of basic stream
classes, like TMemoryStream, TFileStream, and so forth. They all have as their base class TStream.
SuperStream creates a subclass of TStream called TStreamAdapter, which is designed to wrap one
stream with another. This allows us to add additional behavior onto an existing stream. This layering
is a very powerful abstraction, and it permits SuperStream to act as efficiently and flexibly as it does.

15.1.2 Object
The root of most of your data in Delphi will be the object. SuperStream can save and load Delphi’s
atomic types, and can also save and load objects. One of the advantages of SuperStream is that it does
not require you to derive the classes you want to save and load from a common base class. It also
doesn’t require that you have the source code to these classes. You only need to provide a Transfer
Function, which is independent of the class.

63

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

15.1.3 Atomic Types
Atomic types are Delphi’s fundamental types, such as String, Integer, Extended, ShortString, and so
on. SuperStream knows how to read and write most of these types automatically, so you don’t need
to do very much work. Certain atomic types, such as Variants, cannot be streamed in and out. Your
transfer function may have to do some extra work to save and load these types.

15.1.4 Transfer Function
A transfer function (also known as an IO procedure) is a simple function that tells SuperStream how
to save and load your objects. The transfer function has been designed to be as simple and fast to
implement as possible. Let’s look at one now, so you can see how simple it can be. What follows is
a type definition and a transfer function for that type.

TTes t = c l a s s
p u b l i c

s , t : S t r i n g ;
end ;

procedure Tes t IO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ; v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TTes t do s t r e a m . T r a n s f e r I t e m s ([s , t] , [@s , @t] , d i r e c t i o n , v e r s i o n) ;

end ; }

This transfer function (TestIO), can both read and write any TTest object. The more advanced ca-
pabilities of SuperStream aren’t used in this simple example, which is intended to show the brevity
that is possible. Note that separate read and write routines are not necessary. You should also note
that all the fields in the object were read and written with a single, simple call. This is the power of
SuperStream! You can easily create transfer functions for your classes.

15.1.5 Object Versioning
As an application changes and improves, it often finds itself adding fields to its objects, or altering
them in some way. SuperStream attaches a version number to each object that it writes to a stream.
When the object is read back in, the version number is passed to the transfer function, which can read
the old version and make appropriate changes to make the object compatible with the newer one.

This "automatic upgrading" of objects is very convenient when maintaining an application.

Usually, an application will read old versions of objects, and automatically upgrade them to the latest
version when they are stored.

15.1.6 Buffered Stream
Delphi’s streaming functions for files are useful, but tend to be rather slow when many small read
and write calls are made. SuperStream makes many, many of these kinds of calls. To get around this
problem, SuperStream provides buffering stream adapters. These stream adapters wrap themselves
around another stream (like TFileStream), and add a buffering capability to accelerate operations on
the stream. On large reads or writes, with many thousands of objects, order-of-magnitude or higher
speedups are gained.

Of course, on TMemoryStreams buffering isn’t necessary.

64

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

15.2 Nine Easy SuperStream Lessons

Just like SDL, we’ll introduce the SuperStream library with simple lessons. These will provide
simple narratives that will describe the problem to be solved, and demonstrate how it is solved with
SuperStream. After the lessons, you’ll find more detailed reference information on the library and
the classes it contains.

15.2.1 Lesson 1 – Saving and Loading One Object
Here we’ll tackle the simplest case: We have an object that we want to save into a file, and then read
it back. We’ll use an object called TTest for this sample.

TTes t = c l a s s
p u b l i c

s , t : S t r i n g ;
y i p e : I n t e g e r ;
c o n s t r u c t o r C r e a t e ;

end ;

c o n s t r u c t o r TTes t . C r e a t e ; }
begin

s : = ‘ zonk ’ ; }
t : = RandomStr ing ;
y i p e : = I n t e g e r (s e l f) ;

end ;

p r o c e d u r e Tes t IO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ; v e r s i o n : I n t e g e r ; v a r c a l l S u p e r : Boolean) ;

b e g i n
wi th o b j a s TTes t do

s t r e a m . T r a n s f e r I t e m s ([s , t , y i p e] , [@s , @t , @yipe] , d i r e c t i o n , v e r s i o n) ;
end ;

p r o c e d u r e SimpleExample ;

v a r t e s t : TTes t ;
b e g i n

TObjStream . R e g i s t e r C l a s s (TTest , Test IO , 1) ;
T e s t : = TTes t . C r e a t e ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ s i m p l e . od ’ , [] , t e s t) ;
T e s t . f r e e ;
T e s t : = TObjStream . R e a d O b j e c t I n F i l e (‘ s i m p l e . od ’ , []) a s TTes t ;

/ / We’ r e done !
T e s t . f r e e ;

end ;

Let’s take apart this sample code, so we can see how all this works. The first thing we did is define
our class, TTest. We made a simple constructor on TTest to put some random information into the
object. Then we defined TestIO – the transfer function for our TTest class. Transfer functions are
what you need to write to make SuperStream work for you, so let’s look at the function in more
detail. A transfer function (TObjIO) has the following signature:

TObjIO = procedure (o b j : TObjec t ; s t r e a m : TObjStream ;
d i r e c t i o n : T O b j I O D i r e c t i o n ; v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean)

Your transfer function will always receive a pointer (obj to the object that is being read or written.
If an object is being read from the stream, it will already have been constructed by the time your

65

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

transfer function is called. You only need to be concerned about making sure the fields in the object
are properly written or read.

Stream is the object stream the operation is being performed on. Stream is passed to you so that
you can call its methods to help you do the IO. Direction indicates whether the object is being read
(iodirRead) or written (iodirWrite). For most transfer functions, you don’t need to be concerned about
whether you are reading or writing. For some specialized functions (such as transferring your own
container classes), you may need to know whether a read or write is in progress. Version indicates the
version of the object that needs to be read or written. When an object is read off a stream, the version
number is passed to the transfer routine so that it can elect to read in an old version if necessary, and
upgrade the object to the latest version. CallSuper is an advanced variable – you only need to be
concerned with this if you want to prevent SuperStream from calling a superclass’ transfer function.
For normal usage, you want to permit SuperStream to take advantage of your class hierarchy.

On to the example! The first thing we do in SimpleExample is register our transfer function, with
TObjStream.RegisterClass. This is a necessary step for any IO. It’s also a good a idea to call TO-
bjStream.RegisterDefaultClasses. SuperStream knows how to transfer some of the simple VCL
classes, and RegisterDefaultClasses tells SuperStream to use these default transfer functions.

RegisterClass takes three parameters. The first is the name of the class you want to register the
transfer function for. The second is the transfer function. The third is the tip version of the object.
When reading objects, the version number comes from the object’s definition in the stream. When
writing objects, SuperStream will always write the tip version, unless you request otherwise.

Each time you change your object’s structure, you should modify your transfer function to read and
write the new version, and increment the tip version number. We’ll explain this mechanism in more
detail, later.

After registering our transfer function, we create a simple object. Then, we write the object to a file.
TObjStream provides two helper functions for the very common scenario of writing an object to a
file: WriteObjectToFile and ReadObjectInFile. The helper functions do all the work of opening the
file stream, wrapping it with a buffered stream, wrapping the buffered stream with an object stream,
transferring the object, and then shutting down correctly.

After writing the object, we free our test object, then read the object back in with ReadObjectInFile.
Since ReadObjectInFile returns a TObject, we need to cast the object to the correct type. And that’s
how easy it is to use SuperStream!

WriteObjectToFile and ReadObjectInFile are both class methods on TObjStream. That means that
you don’t need to create a TObjStream object to use them.

As a final point in this lesson, please note that SuperStream does not call constructors during object
reading. If it’s necessary to call an object’s constructor to perform some kind of initialization, check
to see that you’re reading (direction = iodirRead), and then call the constructor on the object directly.
You can do this by calling obj.Create, or whatever your constructor’s name is. Calling obj.Create
directly bypasses the allocation of a new object and just invokes the construction code.

In our next lesson, we’ll examine writing more than one object into a stream.

15.2.2 Lesson 2 – Storing Different Objects
In this lesson we’re going to store more than one object into a stream. We’re also going to store
objects of different classes, and examine how SuperStream deals with that situation.

We’re also going to take our first look at SuperStream’s inheritance mechanism. Let’s assume that
we have the same simple TTest type as we defined in the first example. We’ll add a second type for
this lesson.

TExt ra = c l a s s (TTes t)
p u b l i c

66

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

d : I n t e g e r ;
end ;

Note that this type is a subclass of TTest. It adds a single field, d, to TTest’s definition.

Here’s the IO procedure for TExtra:

procedure Ext r a IO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TExt ra do

s t r e a m . T r a n s f e r I t e m s ([d] , [@d] , d i r e c t i o n , v e r s i o n) ;
end ;

Notice that this IO procedure only deals with the field that’s been added, d. It relies on the superclass’
IO procedure to take care of the other fields.

Now let’s create a routine that puts a TTest, a TExtra, and another TText object into a memory stream,
then reads them back.

Procedure T h r e e O b j e c t s ;

Var t1 , t 2 : TTes t ;
E1 : TExt ra ;
Ms : TMemoryStream ;
Os : TObjStream ;

Begin
TObjStream . R e g i s t e r C l a s s (TTest , Test IO , 1) ;
TObjStream . R e g i s t e r C l a s s (TExtra , Ext raIO , 1) ;
T1 : = TTes t . C r e a t e ;
T2 : = TTes t . C r e a t e ;
E1 : = TExt ra . C r e a t e ;
Ms : = TMemoryStream . C r e a t e ;
Os : = TObjStream . C r e a t e (ms , f a l s e , []) ;
Os . W r i t e O b j e c t (t 1) ;
Os . W r i t e O b j e c t (e1) ;
Os . W r i t e O b j e c t (t 2) ;
F r e e A l l ([t1 , t2 , e1]) ;
Os . f r e e ;
Ms . p o s i t i o n : = 0 ;
Os : = TObjStream . C r e a t e (ms , t r u e , []) ; }
T1 : = os . r e a d O b j e c t as TTes t ;
E1 : = os . r e a d O b j e c t as TExt ra ;
T2 : = os . r e a d O b j e c t as TTes t ;
Os . f r e e ;

End ;

The first thing we do is register our two classes, followed by the creation of our test objects. We then
create the memory stream we want to write into, and write our objects to the stream. Then we free
the objects, and reset the memory stream’s position to zero.

Note that when we opened the object stream for writing, the second parameter on the constructor was
false. This parameter tells the object stream whether it owns the stream it is wrapping. If the object
stream owns the other stream, it will free the other stream when the object stream is freed.

To read our objects back in, we simple create our object stream, then call the stream’s ReadObject
routine, casting the results to the correct type. Note that we created the object stream with a true
value for the owned parameter. When we free this object stream, it will automatically free the
underlying memory stream.

67

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

When the TExtra object is written and read, SuperStream first calls its registered IO procedure,
ExtraIO. It then walks up the inheritance hierarchy, calling each IO procedure it finds registered. The
superclass of TExtra is TTest, so TTest’s IO procedure is called next. For this reason, make sure you
don’t read or write a superclass’ fields in an IO procedure, unless you set the CallSuperIO parameter
to false, which will prevent walking up the inheritance tree any further.

15.2.3 Lesson 3 – Writing Embedded Objects
One of the best features of SuperStream is that writing embedded objects is no different from writing
other atomic types! No special call is needed, and you don’t need to treat the object fields differently
from other fields. For that reason, this lesson is particularly short. We’re going to define a new type
that has embedded pointers to other objects in it, and perform some basic IO with it.

Type

TEmbed = c l a s s
I n t 1 , i n t 2 : I n t e g e r ;
T : TTes t ;
Constructor C r e a t e ;
End ;

Constructor TEmbed . C r e a t e ;

Begin
I n t 1 : = Random (1 0 0 0) ;
I n t 2 : = Random (1 0 0 0) ;
T : = TTes t . C r e a t e ;

End ;

procedure EmbedIO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TEmbed do

s t r e a m . T r a n s f e r I t e m s ([i n t 1 , i n t 2 , t] ,
[@int1 , @int2 , @t] ,
d i r e c t i o n , v e r s i o n) ;

end ;

procedure EmbedExample ;

var e : TEmbed ;
begin

TObjStream . R e g i s t e r C l a s s (TTest , Test IO , 1) ;
TObjStream . R e g i s t e r C l a s s (TEmbed , EmbedIO , 1) ;
E : = TEmbed . C r e a t e ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ t e s t . o u t ’ , [] , e) ;
e . f r e e ;
e : = TObjStream . R e a d O b j e c t I n f i l e (‘ t e s t . o u t ’ , []) as TEmbed ;

end ;

And that’s all there is to it! SuperStream automatically detects that the t field is an object, and invokes
its IO procedure automatically. Notice that the embedded t object gets full object versioning and all
other facilities, as well.

68

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

15.2.4 Lesson 4 – Inheritance and SuperStream
SuperStream automatically handles most inheritance issues, because it knows how to call the IO
procedures that are registered for any superclasses of an object being read or written.

In this example, we’ll demonstrate a simple inheritance situation, and a slightly more complex one,
in which we don’t want the superclass’ IO procedure to be called.

Type

TBase = c l a s s
I1 , i 2 : I n t e g e r ;
End ;

TDer ived = c l a s s (TBase)
S : S t r i n g ;
End ;

TAnother = c l a s s (TDer ived)
T o a s t : S t r i n g ;
End ;

procedure BaseIO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TBase do

s t r e a m . t r a n s f e r I t e m s ([i1 , i 2] , [@i1 , @i2] , d i r e c t i o n , v e r s i o n) ;
end ;

procedure Der ivedIO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TDerived do

s t r e a m . t r a n s f e r I t e m s ([s] , [@s] , d i r e c t i o n , v e r s i o n) ;
end ;

procedure AnotherIO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TAnother do

s t r e a m . t r a n s f e r I t e m s ([i1 , t o a s t] , [@i1 , @toas t] , d i r e c t i o n , v e r s i o n) ;
c a l l S u p e r : = f a l s e ;

end ;

procedure I n h e r i t a n c e E x a m p l e ;

var b : TBase ;
d : TDer ived ;
a : TAnother ;

begin
TObjStream . R e g i s t e r C l a s s (TBase , BaseIO , 1) ;
TObjStream . R e g i s t e r C l a s s (TDerived , DerivedIO , 1) ;
TObjStream . R e g i s t e r C l a s s (TAnother , AnotherIO , 1) ;
b : = TBase . C r e a t e ;
d : = TDer ived . C r e a t e ;
a : = TAnother . C r e a t e ;

69

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

b . i 1 : = 1 0 0 ;
b . i 2 : = 1 0 1 ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ ba se . od ’ , [] , b) ; }
d . i 1 : = 2 0 0 ;
d . i 2 : = 2 0 1 ; }
d . s : = ‘ H e l l o ’ ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ d e r i v e d . od ’ , [] , d) ;
a . i 1 : = 3 0 0 ;
a . i 2 : = 3 0 1 ;
a . s : = ‘ y a r f ’ ;
a . t o a s t : = ‘ t o a s t ’ ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ a n o t h e r . od ’ , [] , a) ;
F r e e A l l ([b , d , a]) ;
b : = TObjStream . R e a d O b j e c t I n F i l e (‘ ba se . od ’ , []) a s TBase ;
D : = TObjStream . R e a d O b j e c t I n F i l e (‘ d e r i v e d . od ’ , []) as TDerived ;
A : = TObjStream . R e a d O b j e c t I n F i l e (‘ a n o t h e r . od ’ , []) a s TAnother ;
W r i t e l n (‘ ba se : ‘ , b . i1 , ‘ ‘ , b . i 2) ;
W r i t e l n (‘ d e r i v e d : ‘ , d . i1 , ‘ ‘ , d . i2 , ‘ ‘ , d . s) ;
W r i t e l n (‘ a n o t h e r : ‘ , a . i1 , ‘ ‘ , a . i2 , ‘ ‘ , a . s , ‘ ‘ , a . t o a s t) ;
F r e e A l l ([b , d , a]) ;

end ;

So what do we e x p e c t t o be p r i n t e d o u t by t h i s example ?
We e x p e c t t h i s :

Base : 1 0 0 1 0 1

Der ived : 2 0 0 2 0 1 H e l l o

Another : 3 0 0 0 t o a s t

TAnother ’ s IO procedure i s p r e v e n t i n g t h e c a l l i n g of t h e base c l a s s IO
p r o c e d u r e s , so some of t h e f i e l d s a r e not w r i t t e n . You can use t h i s
t e c h n i q u e when you want your IO procedure to t a k e c h a r g e of a l l IO f o r an
objec t , p r e v e n t i n g t h e s u b c l a s s from doing a n y t h i n g .

\ s u b s e c t i o n { Lesson 5 −− S t o r i n g SDL C o n t a i n e r s }

A c t i v a t i n g SDL ’ s i n t e g r a t i o n wi th SuperS t ream i s ve ry s i m p l e . J u s t add t h e
SDLIO u n i t i n t o your p r o j e c t , and a l l SDL c o n t a i n e r c l a s s e s w i l l
a u t o m a t i c a l l y be r e g i s t e r e d f o r s t r e a m i n g . You ’ l l s t i l l need to code IO
p r o c e d u r e s f o r your own c l a s s e s , b u t SDL w i l l t a k e c a r e of i t s e l f .

SDL ’ s c o n t a i n e r c l a s s d e s i g n and SuperS t ream a r e h i g h l y compl imen ta ry . To
pe r fo rm IO on a l l 1 3 c o n t a i n e r c l a s s e s i n SDL , on ly two IO p r o c e d u r e s needed
t o be w r i t t e n . One IO p r o c e d u r e h a n d l e s c o n t a i n e r s t h a t a r e s i n g l e d a t a
e l e m e n t o r i e n t e d (l i k e a r r a y s and l i s t s) , and t h e o t h e r h a n d l e s c o n t a i n e r s
t h a t a r e p a i r o r i e n t e d (l i k e maps and hash maps) .

SuperS t ream ’ s i n h e r i t a n c e mechanism and SDL ’ s v i r t u a l c o n s t r u c t o r s e n s u r e
t h a t t h e c o r r e c t r e s u l t s a r e r e a c h e d . Here ’ s an example of an SDL c o n t a i n e r
s a v i n g and l o a d i n g i t s e l f a u t o m a t i c a l l y :

\ begin { l s t l i s t i n g }
Uses SDLIO ; / / c a u s e s a u t o m a t i c r e g i s t r a t i o n o f SDL−SuperS t ream i n t e g r a t i o n

Procedure SDLIOExample ;

70

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

Var c : DCon ta ine r ;
I : I n t e g e r ;

Begin
C : = DArray . C r e a t e ;
For I : = 1 to 2 0 do

Begin
Case I mod 3 of
0 : c . add ([I]) ;
1 : c . add ([IntToStr (I)]) ;
2 : c . add (TTes t . C r e a t e) ;
End ;

End ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ c o n t a i n e r . od ’ , [] , c) ;
ObjFree (c) ;
c . f r e e ;
c : = TObjStream . R e a d O b j e c t I n F i l e (‘ c o n t a i n e r . od ’ , []) as DConta ine r ;

end ;

This example also demonstrates how SuperStream and SDL can deftly handle the persistence of
a container class that contains different types (some of which are atomic, and some of which are
objects). SuperStream automatically checks all objects in the SDL container and performs the correct
kind of IO on them.

15.2.5 Lesson 6 – Storing Special Types (TDateTime, Single, Double)
Inprise’s array of const is the core trick at the base of SDL and SuperStream. We can make this
mechanism do a great deal of work for us, but unfortunately it doesn’t do everything.

The place it falls down a bit is in dealing with different floating point types. The array of const
mechanism automatically casts each floating point value into an Extended value.

Because it does this, we cannot distinguish between Single, Double, TDateTime (which is based on
Double), and Extended. To get around this limitation, SuperStream provides some extra type codes
(called the ssvt constants), and a more powerful version of TransferItems, TransferItemsEx. The two
transferItems calls are identical, except for an addition open array parameter, which specifies the type
codes for the items being written.

To understand the type codes, you need to understand what Delphi does when it creates an array of
const. Each item passed in the array gets put in a TVarRec structure, which is defined like this:

TVarRec = record

case Byte of
v t I n t e g e r : (V I n t e g e r : I n t e g e r ; VType : Byte) ;
v t B o o l e a n : (VBoolean : Boolean) ;
v t Ch a r : (VChar : Char) ;
v t E x t e n d e d : (VExtended : PExtended) ;
v t S t r i n g : (V S t r i n g : P S h o r t S t r i n g) ;
v t P o i n t e r : (V P o i n t e r : P o i n t e r) ;
v tPChar : (VPChar : PChar) ;
v t O b j e c t : (VObject : TObjec t) ;
v t C l a s s : (VClass : TClass) ;
vtWideChar : (VWideChar : WideChar) ;
vtPWideChar : (VPWideChar : PWideChar) ;
v t A n s i S t r i n g : (V A n s i S t r i n g : P o i n t e r) ;
v t C u r r e n c y : (VCurrency : PCurrency) ;
v t V a r i a n t : (VVar i an t : P V a r i a n t) ;
v t I n t e r f a c e : (V I n t e r f a c e : P o i n t e r) ;

71

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

v t W i d e S t r i n g : (VWideStr ing : P o i n t e r) ;
end ;

By setting the VType field and the other fields, the TVarRec allows just about any atomic type to be
represented. There’s a table of type codes, called vt constants. They are as follows (and are defined
in the system unit):

v t I n t e g e r = 0 ;
v t B o o l e a n = 1 ;
v t Ch a r = 2 ;
v t E x t e n d e d = 3 ;
v t S t r i n g = 4 ;
v t P o i n t e r = 5 ;
v tPChar = 6 ;
v t O b j e c t = 7 ;
v t C l a s s = 8 ;
vtWideChar = 9 ;
vtPWideChar = 1 0 ;
v t A n s i S t r i n g = 1 1 ;
v t C u r r e n c y = 1 2 ;
v t V a r i a n t = 1 3 ;
v t I n t e r f a c e = 1 4 ;
v t W i d e S t r i n g = 1 5 ;

S u p e r S t r e a m s adds a c o u p l e of new type codes :
s s v t S i n g l e = −2 ;
s s v t D o u b l e = −3 ;
s s v t D a t e T i m e = s s v t D o u b l e ;

Normally, when you call TransferItems, you don’t need to specify type codes, because Delphi sup-
plies them for you when you create an array of const. For the special types (single, double, TDate-
Time), you need to tell SuperStream the type of the variable.

The third parameter of the TransferItemsEx call is the special one. It specifies the vt type codes
for each of the fields you are writing. SuperStream provides a shortcut here – frequently you aren’t
writing that many of these special fields. You don’t need to specify the type code for all of the fields
you are writing. To take advantage of this, put all your special fields first, supplying type codes in
the third parameter for them. SuperStream will automatically assign the remaining type codes. Our
code example for this lesson will demonstrate all of this.

Type
T S p e c i a l = c l a s s

I n t 1 , i n t 2 : I n t e g e r ;
S t : S t r i n g ;
When : TDateTime ;
R : S i n g l e ;

End ;

procedure S p e c i a l I O (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as T S p e c i a l do

s t r e a m . T r a n s f e r I t e m s E x ([when , r , i n t 1 , i n t 2 , s t] ,
[@when , @r , @int1 , @int2 , @st] ,
[s sv tDa teTime , s s v t S i n g l e] ,
d i r e c t i o n , v e r s i o n) ;

end ;

72

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

procedure S p e c i a l E x a m p l e ;

var s : T S p e c i a l ;
begin

TObjStream . R e g i s t e r C l a s s (TSpec i a l , S p e c i a l I O , 1) ;
s : = T S p e c i a l . C r e a t e ;
with s do

begin
s . i n t 1 : = Random (1 0 0 0) ;
s . i n t 2 : = Random (1 0 0 0) ;
s . s t : = RandomStr ing ;
s . when : = Now ; }
s . r : = Random (1 0 0 0) / 1 0 0 0 ; }

end ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ t e s t . o u t ’ , [] , s) ;

S . f r e e ;
S : = TObjStream . R e a d O b j e c t I n F i l e (‘ t e s t . o u t ’ , []) as T S p e c i a l ;
s . f r e e ;

end ;

Note that we only specified the special type codes for the first two variables, where it was necessary
to do so.

15.2.6 Lesson 7 – Storing Raw Data
SuperStream provides a number of facilities to help with the transfer of raw data in and out of streams.
Storing your application data sometimes requires this handling of large blocks of data for objects like
bitmaps, or if you have a class with an embedded array, or things of that type.

We’re going to demonstrate how to do IO on arbitrary blocks of memory, and how to transfer arrays
of atomic types. What we’ll show here is a sample type that has both an array of strings in it, and a
bunch of raw data that represents a bitmap. We want to read and write this object.

Type
TRaw = c l a s s

FNames : I n t e g e r ;
FName : array [1 . . 2 5] of S t r i n g ;
FAddres se s : array [1 . . 2 5] of S t r i n g ;
FEmployees : array [1 . . 2 5] of TEmployee ;
FBi tmapSize : I n t e g e r ;
FBitmapData : P o i n t e r ;

End ;

procedure S p e c i a l I O (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TRaw do

begin
s t r e a m . T r a n s f e r I t e m s ([FNames , FBi tmapSize] [@Fnames , @FBitmapSize] ,

d i r e c t i o n , v e r s i o n) ;
s t r e a m . T r a n s f e r A r r a y s ([FName [1] , FAddres se s [1] , FEmployees [1]] ,

[@FName [1] , @FAddresses [1] , @FEmployees [1]] ,
[2 5 , 2 5 , 2 5] , d i r e c t i o n) ;

i f d i r e c t i o n = i o d i r R e a d then
GetMem (FBitmapData , F b i t m a p S i z e) ;

s t r e a m . T r a n s f e r B l o c k s ([FBitmapData] , [FBi tmapSize] , d i r e c t i o n) ;
end ;

73

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

end ;

procedure RawExample ;

var r : TRaw ;
begin

r : = TRaw . C r e a t e ;
TObjStream . R e g i s t e r C l a s s (TRaw , RawIO , 1) ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ raw . od ’ , [] , r) ;
r . f r e e ;
r : = TObjStream . R e a d O b j e c t I n F i l e (‘ raw . od ’ , []) as TRaw ;
r . f r e e ;

end ;

This example shows the general technique for reading and writing arbitrary arrays of atomic values,
and storing binary blocks of data. Everything here should be familiar except what’s new in the IO
procedure, so let’s concentrate on that.

The first thing this IO procedure does it transfer the sizes of the other items it’s going to write. These
are atomic values and are very simple to move, so we do them first. We also do them first because
we may need to get at the information in them during a read operation.

Next we invoke the TransferArrays function. TransferArrays needs four parameters: the first item
in each array (which is used to get type information), the address of the first item in the array (which
is used to figure out where everything is), the number of items in the array, and the direction flag.
That’s all that’s needed – SuperStream takes care of figuring out the rest, and handles the transfer of
all atomic values (including arrays of objects) automatically.

Following that is a transfer of a binary block of data. This is accomplished with the TransferBlocks
function. TransferBlocks can actually write multiple blocks at the same times (just like TransferAr-
rays can write multiple arrays simultaneously). In our example we’re only writing one block.

The only wrinkle in this example is that during a (read, we need to allocate the memory for our
block. This is accomplished with the GetMem call – and note that we already know the size of the
block we’re reading, because it was part of the atomic value read we did at the beginning of the IO
procedure.

TransferBlocks takes three parameters: The address of the block, the size of the block, and a direction
flag. SuperStream takes care of the rest.

15.2.7 Lesson 8 – Storing Complex Object Graphs
You may have a complex object graph – which is a bunch of objects that have pointers that refer to
each other. SuperStream can take care of this for you automatically, by assembling an object graph
tracking system. To enable this mechanism (which slows down SuperStream very slightly), pass the
[osoGraph] option to the constructor of the TObjStream. Or, if you’re using the WriteObjectToFile
or ReadObjectInFile calls, pass [osoGraph] as the options. This short example will demonstrate this:

Type
TOne = c l a s s ;
TTwo = c l a s s ;
TOne = c l a s s

FHel lo : S t r i n g ;
I n s i d e : TTwo ;

End ;

TTwo = c l a s s
I n s i d e : TOne ;
Ouch : S t r i n g ;

74

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

End ;

procedure OneIO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TOne do

s t r e a m . T r a n s f e r I t e m s ([FHel lo , I n s i d e] , [@Fhello , @Inside] , d i r e c t i o n ,
v e r s i o n) ;

end ;

procedure TwoIO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

begin
with o b j as TTwo do

s t r e a m . T r a n s f e r I t e m s ([Ouch , I n s i d e] , [@Ouch , @Inside] , d i r e c t i o n ,
v e r s i o n) ;

end ;

procedure GraphExample ;

var o : TOne ;
t : TTwo ;

begin
TObjStream . R e g i s t e r C l a s s (TOne , OneIO , 1) ;
TObjStream . R e g i s t e r c l a s s (TTwo , TwoIO , 1) ;
O : = TOne . C r e a t e ;
T : = TTwo . C r e a t e ;
o . FHel lo : = ‘ h e l l o ’ ; }
o . i n s i d e : = t ; }
t . ouch : = ‘ ouch ’ ;
t . i n s i d e : = o ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ t e s t . od ’ , [osoGraph] , o) ;
F r e e A l l ([o , t]) ;
O : = TObjStream . R e a d O b j e c t I n F i l e (‘ t e s t . od ’ , [osoGraph]) as TOne ;
Write ln (‘ P r o o f : ‘ , o . i n s i d e . i n s i d e . F h e l l o) ;

end ;

By passing the osoGraph option, SuperStream keeps track of all objects it reads an writes. It can
then properly restore multiple references to the same object. In this example, t’s pointer to o is
automatically set up, even though o has already been read.

15.2.8 Lesson 9 – Reading and Writing Different Versions of Objects
Objects change as an application is maintained. We’re going to look at how SuperStream deals with
different versions of objects in this example. What we’ll do is define an object, show its IO procedure,
then change the definition of the object and show the new IO procedure for it.

Type
TAppObject = c l a s s

Name , a d d r e s s : S t r i n g ;
S a l a r y : I n t e g e r ;

End ;

procedure AppIO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

75

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

begin
with o b j as TAppObject do

s t r e a m . t r a n s f e r I t e m s ([name , a d d r e s s , s a l a r y] , [@name , @address , @salary] ,
d i r e c t i o n , v e r s i o n) ;

end ;

procedure I n i t E x a m p l e ;

var a : TAppObject ;
begin

TObjStream . R e g i s t e r C l a s s (TAppObject , AppIO , 1) ;
A : = TAppObject . C r e a t e ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ z o t ’ , [] , a) ;
a . f r e e ;
a : = TObjStream . R e a d O b j e c t I n F i l e (‘ z o t ’ , []) as TAppObject ;

end ;

This is a very simple IO procedure, and very straightforward. Now we’ll make two changes to the
existing object: We’ll add a new field and we’ll delete an old one. Here’s what the new code looks
like:

Const
H i g h S a l a r y V a l u e = nnnn ;

Type
TAppObject = c l a s s

Name , Address : STring ;
S a l a r y H i g h : Boolean ;

End ;

procedure AppIO (o b j : TObjec t ; s t r e a m : TObjStream ; d i r e c t i o n : T O b j I O D i r e c t i o n ;
v e r s i o n : I n t e g e r ; var c a l l S u p e r : Boolean) ;

var o l d S a l a r y : I n t e g e r ;
begin

case v e r s i o n of
1 : with o b j as TAppObject do

begin
s t r e a m . t r a n s f e r I t e m s ([name , a d d r e s s , o l d S a l a r y] , [@name , @address ,

@oldSa la ry] , d i r e c t i o n , v e r s i o n) ;

S a l a r y H i g h : = o l d S a l a r y $>$ H i g h S a l a r y V a l u e ;
end ;

2 : with o b j as TAppObject do
s t r e a m . t r a n s f e r I t e m s ([name , a d d r e s s , s a l a r y H i g h] , [@name , @address , @salaryHigh] , d i r e c t i o n , v e r s i o n) ;

end ;
end ;

procedure I n i t E x a m p l e ;

var a : TAppObject ;

begin
TObjStream . R e g i s t e r C l a s s (TAppObject , AppIO , 2) ;
A : = TAppObject . C r e a t e ;
TObjStream . W r i t e O b j e c t T o F i l e (‘ z o t ’ , [] , a) ;
a . f r e e ;
a : = TObjStream . R e a d O b j e c t I n F i l e (‘ z o t ’ , []) as TAppObject ;

76

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

end ;

We’ve modified the IO procedure to have a case statement, switched on the version being passed
in. If we’re reading or writing the tip version (which has now been set to 2 – notice the change in
the RegisterClass call), then we just perform convention IO. If we’re reading an old object (which
is pretty much the only way it happens, because writes of old objects don’t happen that much), we
need to do a little extra processing. We need to make sure we correctly read in any deleted members
from the old version of the object. Then, we need to make sure that any new members are filled in
correctly. We do this in this case by testing the salary value that’s read in, and setting the field as
appropriate.

This technique of using temporary variables to hold old, deleted values works well. In practice, you’ll
rarely be deleting variables. Addition of new fields is much more common. Just make sure that your
IO procedure can correctly initialize the new values.

A very important point to note is that constructor functions are not called by SuperStream.

SuperStream relies on the IO procedure to correctly create the fields. If it’s really important that
the constructor be called, check to see if you’re reading an object (direction = iodirRead) and then
invoke the constructor yourself. SDLIO does this to ensure that the container classes are correctly
built. Make sure that you only call the constructor if the io direction is iodirRead. The author of SDL
and SuperStream got bitten badly by this one :-).

15.3 SuperStream Classes

This section contains a brief discussion of the classes that are included in the SuperStream unit, and
how you would use them. See the Lesson material for more detailed examples on usage, and com-
mon situations. The online documentation contains a detailed HTML reference for the SuperStream
classes; please refer to it for complete information. This section discusses the major points you
should be aware of.

15.3.1 TStreamAdapter
We discuss TStreamAdapter first because it is the root of the SuperStream class hierarchy.

A stream adapter is a TStream-compatible object that "wraps" itself around another stream, usually
to provide additional functionality. SuperStream’s TObjStream class is a stream adapter. Using the
adapter technique permits TObjStream to read and write objects from any other type of TStream, in-
cluding TFileStream and TMemoryStream, which are shipped with Delphi. Using an adapter stream
also permits TObjStream to operate over other types of streams that may not be included with Delphi.
Examples of such streams include compressing streams and buffering stream adapters, or streams that
write their contents over network connections.

The TStreamAdapter provides a constructor that takes another stream as an argument; this is the
stream that is being "wrapped". It then delegates the TStream functions onto the wrapped stream.
This provides a basis for creating new adapter streams.

15.3.2 TObjStream
TObjStream is the primary focus of the SuperStream package. It provides comprehensive support
for reading and writing objects to and from streams. It also provides many convenience functions
for handling large binary objects, handling arrays of atomic types, and dealing with complex graphs
of objects. The Lessons section contains detailed examples of the proper usage of TObjStream. For
comprehensive reference information, please see the online HTML reference.

77

CHAPTER 15. PERSISTENCE WITH SUPERSTREAM

TObjStream is descended from TStreamAdapter, so that it can be wrapped around any kind of
stream. If you are reading and writing from files, Soletta highly recommends that you first wrap
the TFileStream with one of the buffering stream adapters, then wrap the object stream around the
buffered stream. You may achieve an order of magnitude performance improvement, or more, by
doing this.

The binary data created by TObjStream compresses well, so you may wish to add a compressing
stream to your application’s design.

15.3.3 TBufferedInputStream
TBufferedInputStream is designed to provide buffered read access to another stream. Seeking and
writing are not supported – the sole purpose of this class is to provide rapid, sequential access to the
data contained in another stream.

15.3.4 TBufferedOutputStream
TBufferedOutputStream is designed to provided buffered write access to another stream. Reading
and seeking are not supported, and will cause exceptions to be thrown. This class is intended to
provide output buffering of a sequentially written stream. The output of TObjStream has this char-
acteristic.

15.3.5 TObjList
TObjList is a simple list class provided by SuperStream to contain a list of objects. It is a subclass
of Delphi’s TList class, with an addition property or two. You may find it useful in your "quick and
dirty" apps, if you don’t want to bring in the full power of the SDL library.

By using TObjStream.RegisterDefaultClasses, SuperStream will automatically be able to save and
load TObjList objects.

78

Chapter 16

Epilogue

The creation of SDL and SuperStream has been a long, but satisfying journey through the intrica-
cies of building a complex library package, and adapting theories to the realities of a programming
environment.

I’d like to take a moment to thank certain individuals whose work has made mine possible:

Stepanov and Lee, the creators of STL, whose architectural work made these kinds of libraries pos-
sible, and provided the roadmap for constructing new ones.

ObjectSpace’s JGL team, who adapted STL to Java to create the Java Generic Library, and in doing
so, proved that the STL concepts could migrate from one language to another.

Inprise, for creating the Delphi environment. I’ve heard lately that a programmer’s favorite environ-
ment becomes his hammer, and everything starts to look like a nail to that person.

Well, Delphi is my hammer, and I’ve pounded a ton of nails with it in the last five years. It is, without
a doubt, the most productive environment I’ve ever worked in, and is a very precise match to my list
of wants. Delphi just keeps getting better and better. I hope SDL gives it new credibility.

My friends: Kurt and Melanie Westerfeld, Tim Sheridan, Larry Chang (thanks for the office space),
Steve Giordano Jr., Steve Giordano Sr., Tim Shinkle, and Paula Thomson. They delivered well-timed
criticisms and encouragement.

The SDL Reviewers:

Xavier Pacheco; William Mann; Robert P Kerr; Robert Marsh; Rob Lafreniere; Ray Konopka; Phillip
Woon; Peter Roth; Pablo Pissanetzky; Mark Vaughan; Mark Leymaster;

Marco Cantu’; Luk Vermeulen; Louis Kleiman; Kurt Westerfeld; Julian Bucknall; John Elrick; J
Merrill; Deven Hickingbotham; Danny Thorpe; Brad Stowers; Josh Dahlby

79

	Word from the porter
	Introduction
	Product Versions

	How to use this documentation
	Quick Start
	Installation
	Archive Installation
	Soletta Store Installation

	Basic Concepts
	Accessing the SDL and SuperStream Libraries
	Item
	Container
	Iterator
	Comparator
	Closure
	Morphing Closure
	Garbage Collection
	AtEnd
	Range
	Pair
	Sequence
	Vector
	Map
	Set
	Hashing
	Algorithm

	Quick Example
	A Note About Namespaces
	Error Handling
	Ten Easy SDL Lessons
	Lesson 1 - Keeping Lists of Objects
	Lesson 2 -- Keeping Lists of Strings and other Atomic Types
	Lesson 3 -- Iterating with Iterators
	Lesson 4 -- Using SDL instead of Delphi's Data Structures
	Lesson 5 -- Using Maps (Key-Value Pairs
	Lesson 6 -- Using Sets
	Lesson 7 -- Using the Sort Algorithms
	Lesson 8 -- Changing Data Structures
	Lesson 9 -- Transforming Objects
	Lesson 10 -- Filtering Objects

	Containers
	All About DObjects
	Example Code
	Container hierarchy
	DIterator
	Forward Iterators
	Bidirectional Iterators
	Random Iterators
	Iterator Adapters

	DContainer
	Comparators
	Constructing Containers
	Number of Items
	Adding Items
	Removing Items
	Retrieving Items

	DSequence
	Adding Items
	Retrieving Items
	Removing Items

	DVector
	DAssociative
	Sets and Maps
	Adding Elements
	Finding Elements
	Removing Elements

	Container Adapters
	Creating Your Own Containers
	Frequently Asked Questions
	How do I get the number of items in a container?
	How do I add items to a container?
	How do I iterate over a container?
	How do I retrieve the keys from a map container?
	How do I sort a sequence?
	Why does SDL use functions instead of class members for its algorithms
	How do I find items in a map?

	Algorithms
	A Note About Ranges
	Naming Conventions
	Applying
	forEach
	Inject

	Comparing
	Equal
	LexicographicalCompare
	Median
	Mismatch

	Copying
	Copy

	Counting
	Count

	Filling
	Fill
	Generate

	Filtering
	Unique
	Filter

	Finding
	AdjacentFind
	BinarySearch
	Detect
	Every
	Find
	Some

	Freeing and Deleting
	ObjFree
	ObjDispose
	ObjFreeKeys

	Hashing
	OrderedHash
	UnorderedHash

	Removing
	Remove
	removeCopy
	removeIf

	Replacing
	Replace
	ReplaceCopy
	ReplaceIf

	Reversing
	Reverse
	ReverseCopy

	Rotating
	Rotate
	RotateCopy

	Set Operations
	Includes
	SetDifference
	SetIntersection
	SetSymmetricDifference
	SetUnion

	Shuffling
	RandomShuffle

	Sorting
	Sort
	StableSort

	swapping
	IterSwap
	SwapRanges

	Transforming
	Collect
	TransformBinary
	TransformUnary

	Utility Functions
	Atomic Converters
	Iterator Helpers
	Hashing
	DObject Helpers
	Morphing Closures
	Printing

	Debugging Support
	Persistence with SuperStream
	Basic Concepts
	Stream
	Object
	Atomic Types
	Transfer Function
	Object Versioning
	Buffered Stream

	Nine Easy SuperStream Lessons
	Lesson 1 -- Saving and Loading One Object
	Lesson 2 -- Storing Different Objects
	Lesson 3 -- Writing Embedded Objects
	Lesson 4 -- Inheritance and SuperStream
	Lesson 6 -- Storing Special Types (TDateTime, Single, Double)
	Lesson 7 -- Storing Raw Data
	Lesson 8 -- Storing Complex Object Graphs
	Lesson 9 -- Reading and Writing Different Versions of Objects

	SuperStream Classes
	TStreamAdapter
	TObjStream
	TBufferedInputStream
	TBufferedOutputStream
	TObjList

	Epilogue

