
Development Tutorial (a.k.a Build FAQ)

by Marco van de Voort

March 24st 2010

1

Foreword to the Development Tutorial

FAQ version 0.08

FPC version 2.4.0/2.5.1 (release/devel)

This FAQ was created in early 2.0 times (2005) when I noticed that more people started playing with the more advanced
aspects of the buildprocess of FPC like tracking daily SVN status, crosscompiling and in general trying things that used to
be only done by a small circle of core developpers and maybe a select few on the maillists and in the Lazarus project. Things
like bootstrapping a new version, release building, crosscompiling, parameterising the build process, attempting to port to
new OSes etc. This is logical, because due to (mainly) Peter's e�orts, the building process is a lot more robust and �exible
then it used to be. Since the �rst version of this faq I've debugged specially the crosscompiling part of the process a bit
more.

The Development Tutorial was originally meant as the successor of the old 0.99.x make cycle FAQ, which had gotten horribly
outdated. Moreover, the basic idea of the make cycle faq didn't work in practice. The FAQ contained only a step by step
treatise of the basic features, and when something went wrong (e.g. a .ppu of an old version somewhere), users often had
no idea how to solve the problem. So this faq is set up more as an indepth treatise of building FPC and related issues, with
much more background information that can assist general problem hunting procedures. So if you think that this FAQ is
too verbose and even pedantic at times, and should be limited to the bare essentials, my answer will be: been there, done
that, didn't work :-)

This tutorial is not even close to being a replacement for the real manuals. Most of it will be in the manual
though, except some of the outlook on future versions. Try to read the tutorial entirely at least once, including parts that
are not so relevant to you. It is all connected, and reading the parts less useful for you might help you see the bigger picture.

The purpose of the faq is di�erent from the docs because it tries to document use cases rather than a reference, and also
because it is not fully synchronized with a compiler version.

If you have more questions, suggestions, try the FPC maillists http://www.freepascal.org/maillist.html or irc 1

Versioning of the faq

The faq comes in two versions, the PDF at http://www.stack.nl/marcov/buildfaq.pdf one and an HTML version at http://www.stack.nl/marcov/buildfaq.
The PDF version is the authorative one and more often updated. The HTML version is mainly used to post URLs to speci�c
topics on maillists and IRC. Unfortunately, the HTML export of LYX is not the stablest in the world, so sometimes exporting
to html doesn't even succeed

• Versions 0.01 and 0.02 were continuously updated, both exist in multiple versions.

• Version 0.03 mainly is an update for the $FPCTARGET and related directory layout modi�cations in 1.9.5, and
improves the index and glossary signi�cantly. Also 1.0.x topics are phased out.

• Version 0.04 is an update for 2.0 and post 2.0 development. Peter has big plans with the build process (replacing
MAKE with a more FPC friendly solution), so 0.05 could be a major update. Also needs SVN tutorials.

• Version 0.05 is an update after some progress on cross compiling, and the emerging of an internal linker

• Version 0.06 is an update after a long break due to losing the LYX source as a result of a stolen computer. A PDF
version was OCRed and reformatted, and some updating was done:

� Compiler version numbers updated to 2.2.2

� New packages structure.

� Index expanded

� More 1.0.10 and CVS removal

• Version 0.07 is some maintenance after 2.2.4 release

� compiler version updated

� some 2.3.x topics, whichwill be increased in the future.

� Lyx 1.6.2 (mostly sorting of all-caps index entries)

1irc.freenode.net channel #fpc, best populated in the late evenings CET.

http://www.stack.nl/marcov/buildfaq.pdf
http://www.stack.nl/marcov/buildfaq

2

� newer buildscripts

• Updates 0.07a and b only have minor typo �xes, and was released in the day after the initial 0.07 version

• Version 0.08 is a maintenance release after 2.4.0, LYX version 1.6.5

Contents

I Ordinary building 6

1 Base principles, naming, versions, requirements etc 7

1.1 Versions, branches, tags . 7

1.2 Requirements . 8

1.2.1 ld: The GNU linker. 9

1.2.2 as: GNU asssembler . 9

1.2.3 ar: GNU archiver . 9

1.2.4 make: GNU make . 10

1.2.5 FPC itself. ppc386, ppcppc, ppcsparc, fpc. 11

1.2.6 Other tools . 12

1.3 Obtaining source . 12

1.3.1 Introduction . 12

1.3.2 SVN Modules . 12

1.3.3 Downloading source via SVN . 12

1.3.4 Updating the source via SVN . 13

1.3.5 Reverting SVN checkouts . 13

1.3.6 Exporting (win32 users, read this!) . 13

1.3.7 More info about SVN . 14

1.4 Extension conventions . 14

1.5 Directory layout . 14

1.5.1 Unix (and full clones like Linux) . 15

1.5.2 Windows and Dos . 16

1.5.3 Where are my units? . 16

1.6 The fpc.cfg con�guration �le . 16

1.6.1 Unit path -Fu . 17

1.6.2 Binutils path -FD . 17

1.6.3 Binutils pre�x, all binutils in one directory . 18

1.6.4 Library path -Fl . 19

1.6.5 Verbosity options . 20

1.7 The order to compile parts of FPC . 20

1.7.1 Some interesting build scripts . 21

1.8 Smart linking . 21

3

CONTENTS 4

2 Standard building 22

2.1 Cleaning . 22

2.1.1 Make clean . 22

2.1.2 make distclean . 22

2.1.3 Cleaning of crosscompile builds . 22

2.2 Bootstrapping: make cycle . 22

2.3 Compiling a snapshot; make all or make build . 23

2.4 Current build procedure on win32 . 26

2.4.1 The slow solution: SVN exporting . 26

2.4.2 The Quick solution: COPYTREE . 27

2.4.3 VISTA speci�c topics: install.exe . 27

2.4.4 Putting it all together . 27

2.5 Lazarus . 28

2.6 Typical problems and tips . 28

2.6.1 cannot �nd -l<xxxx> . 28

2.6.2 CONTNRS or other FCL-BASE units not found . 29

2.6.3 Piping stderr and stdout to the same �le. 29

2.6.4 (Windows) building and install fails with �invisible� errors . 29

3 Crosscompiling 30

3.1 Basic crosscompiling of a snapshot . 30

3.2 Crosscompiling without cross-assembler. 30

3.3 Crosscompiling Lazarus . 31

3.3.1 Crosscompiling Lazarus from windows to Linux . 31

3.3.2 Preparing a directory with Linux libraries . 31

3.4 Interesting compiler and make�le options . 32

3.4.1 Skipping built in directories: -Xd . 32

3.4.2 Di�erence in paths: -Xr<directory> . 32

3.4.3 -Xt static linking . 32

3.4.4 CROSSOPT . 32

3.4.5 LIBDIR . 32

4 Systematic problem solving for the FPC build proces 33

4.1 Determining the problem, increasing the verbosity. 33

4.2 Checklist . 34

4.3 Recompiling . 34

5 Misc topics 36

5.1 Programming models. 36

5.2 Link ordering . 37

5.2.1 -XLA . 37

5.2.2 -XLO . 38

5.2.3 -XLD . 38

5.2.4 Example: Fixing the FreeBSD GTK breakage with linkordering . 38

5.2.5 Example II: FreeBSD 4 vs 5 pthreads:-Xf . 38

CONTENTS 5

II Glossary 39

Part I

Ordinary building

6

Chapter 1

Base principles, naming, versions, requirements

etc

1.1 Versions, branches, tags

Roughly there are four versions categories of FPC now:

pre-1.0 These are versions are usually numbed 0.99.x Versions before 0.99.8 don't have Delphi features. In general these
are non supported, but specially versions (0.99.12 and 0.99.14 based versions) are essentially beta's for 1.0. However
we are talking 10 year old betas here, and a lot has changed, even during the 1.0.x series.

1.0.x The so called FIXES_1_0_0 branch. These versions (1.0, 1.0.2, 1.0.4, 1.0.6 and 1.0.10) are bug�x releases of what
is basically 1.0. However sometimes TP and Delphi compability �xes can break backwards compability. 1.0.x is frozen,
and there will be no new releases or even �xes, after 1.0.10 from may 2003, and we strongly recommend upgrading to
2.0

1.1.x/1.9.x/2.0.x This is the branch that yielded 2.0.x series. It used to be called the development branch before 2.0,0,
but now that 2.0 is declared stable, the best name would be 2.0.x stable branch. Compared to the 1.0.x branch, it adds
most of the missing Delphi features (dynamic arrays, interfaces, default parameters) and supports several processors.
This branch has multiple version numbers, since while in alpha it was called 1.1.x, while in beta 1.9.x and the real
releases were called 2.0.x. This branch is now closed , 2.0.4 will probably be the last release of the FIXES_2_0_0
branch

2.1.x/2.2.x This is the branch for the FPC 2.2.x series. Main highlights are support for internal linking for windows
(win32/win64/wince). Win64 and WinCE are also new. �xes_2_2 branch. 2.2.4 is the last of the 2.2.x branch,
because merging was getting increasingly laboursome.

2.3.x/2.4.x The branch for post 2.4 series. 2.4.0 was released on januari 1st, 2010 and contains improvements in resource
handling, dwarf and for newer architectures (specially the 64-bit ones)

2.5.1 This is the version in TRUNK, the bleeding edge of development. Some of its features will be merged back to 2.4.x,
while others will only reach endusers when 2.5.1 goes golden as 2.6.0 or 3.0.0.

One can see what (post 2.0.0) branches exists via the http://svn.freepascal.org/cgi-bin/viewvc.cgi/?root=fpc

Viewvc webinterface.

Releases are tagged with a RELEASE_x_y_z for release x.y.z. So release 1.0.2 is tagged RELEASE_1_0_2 in CVS. While
1.0.8 tags might exist in CVS, there is no o�cial 1.0.8 version , this because creating the 1.0.8 release took a long time,
and the package was rebuilt several times, while already downloadable via FTP. Because the core team was afraid all those
versions with the same number would create confusion, it was decided to increase the version number for the �nal release to
1.0.10. The version history is illustrated in the following graph:

7

http://svn.freepascal.org/cgi-bin/viewvc.cgi/?root=fpc

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 8

While 1.0.x also supports two processors (intel x86 and Motorola m68k), the 1.1.x branch contains a more fundamentally
en- gineered approach to make FPC a multi architecture compiler. Currently it looks like the �rst release of the 1.1.x branch
will support x86, ppc, Arm (Zaurus and similar devices) AMD64(x86-64)and Sparc (V8,V9).

1.2 Requirements

A supported OS and processor are of course the main requirements. Such info can be better gotten from the website, since
the status changes frequently.1

The FPC build process needs certain tools. While usually this is all provided by the OS, or installed by the FPC release
package, I name them here explicitely to make it easier for people to debug build problems.

The main tools:

ld The GNU linker. Links a bunch of .o and .a's together to form a library (.dll or .so) or a �nished program (like .exe on
windows, extensionless on Unix)

as The GNU assembler. Assembles the textform representation in a .s or .as �le to an .o �le.

ar needed for creating static libraries (.a) from .o's. Static libraries are used when building for smartlinking.

make GNU make. Determines the order of what to build. Both on �le as on directory level. Called gmake on *BSD

ppc386 or ppc<processor> in general, preferably the last release version. Bootstrapping from other compilers is not realistic,
and, to my best knowledge, hasn't been attempted in years (1.0.x times)

The �rst three are found in the package �binutils�, the version doesn't matter much as long as it is not a fossil. At least on
major platforms. Some platforms package an old version, e.g. OpenBSD used to package fossils because it still used a.out as
a binary format, though I heard that they �nally got rid of that in version 3.4. These utils are rarely a source of errors, but
depend on the target OS and CPU, which complicates cross-compiling a bit.

Make is usually obtained from the same source as binutils, but packaged separately. See the separate section on make below
for some common caveats.

1Actually, while writing this, I witnessed the �rst working �Hello world� program on the Sparc V8 architecture :-)

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 9

Windows users that build a system from scratch, should get the makew32.zip and asldw32.zip (or similar) �les from the
�separate� subdirectory of the last release to get the needed external tools.

Under Mac OS X/Darwin , the binutils and make are part of the Apple developertools, which for 10.3 are automatically
installed when you install XCode. Fink (an open source software distribution for Mac OS X) is not strictly required for FPC
operation, but most Unix libraries you might need (like mysql, ncurses etc) are part of Fink. The rumour is that in 10.4
these tools were �nally based on recent GNU versions,

1.2.1 ld: The GNU linker.

The GNU linker is the �nal step in the building process of a FPC source to a runnable binary. As said before, a recent
version that supports linkerscript �les is the only prerequisite for an easy ride, except for win32, where the linker should
understand �base-�le and �image-base parameters. (these are also already supported over 2 years though). The supported
Win32 platform as far as buildtools are concerned, is mingw32, not cygwin. FPC can link to cygwin libraries though.

One could maybe use other linkers then GNU, but that'd require reimplementing the part that calls the linker (this has
been done e.g. for OpenBSD a.out in the 1.0.x compiler and Darwin's mach-O LD in 2.0+). However keep in mind that
the connection between the assembler and the linker is a commonformat for the object �le (.o). Changing to a linker that
uses a di�erent format might also require a di�erent assembler, and in turn, a di�erent assembler might require adaptions to
the FPC part that writes the assembler code. However all these are doable, even for people that aren't complete compiler
wizards.

If your platform is not a mainstream *nix or windows, try to �nd a linker that supports the �ld-sections parameter. The
new smartlinking will be based on this LD parameter.

Starting with FPC 2.1.1, the compiler also has a linker internal for some platforms which is enabled using -Xi. This internal
linker links way faster, and uses less memory,specially when using smartlinking2 . At the time of writing the Windows
platforms (PE) are supported by this internal linker.

1.2.2 as: GNU asssembler

The assembler must be GNU (G)AS, and must be relatively recent. Really old x86 GNU assemblers might have hidden
bugs that don't surface when used with gcc. Since GNU AS is a typical backend assembler, in the past adressing modes and
opcodes that aren't emitted by gcc could be problematic.

An example of this is the OpenBSD 3.x series, where by just substituting a newer assembler from the ports tree FPC suddenly
builds, while it fails with the packaged assembler. A relatively recent version is also nice because these probably support
newer x86 instructions (SSE2,SSE3).

On some platforms (win32 and x86 ELF), FPC has an internal assembler, and avoids AS for performance reasons. This
internal assembler is called the binwriter in FPC jargon. The binwriter is a bit more than a pure assembler though, since
it can also directly write static libraries (*.a) . While noticable with ordinary compiles too, the performance problems that
the binwriter solves are mainly noticable when smartlinking.

FPC also has the ability to generate code in TASM, NASM, MASM and WASM (watcom) format. However these aren't fre-
quently tested, so your mileage may vary.

1.2.3 ar: GNU archiver

The archiver creates archive (.a) �les out of object code �les (.o). This is mainly done to reduce the number of �les involved
in the linking process, and on disc. Archive �les are often called static libraries because they contain roughly the same code
for static linking as the .so (or .DLL) �les do for dynamic code. (a .dll and .so can be more than one .o too). The GNU
linker can directly access .a libraries.

AR can be a problem sometimes, since the compiler passes all individual �les on the commandline. Due to e.g. smartlinking
and this really can be a lot, and be larger than the maximal allowed nr of parameters for the OS. (64k params is too little,
128k is still ok)

2About 250-275 MB as maximum amount of memory used to fully smartlink Lazarus, as opposed to +/- 1.5GB for GNU LD

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 10

1.2.4 make: GNU make

The build process of Free Pascal uses plain (GNU make) make�les that are generated by FPCmake. FPCmake generates the
Make�les from a global template and the Make�le.fpc in each directory. This Make�le.fpc is a simple INI �le that extends
and parameterises the global template3. There are plans for the future to get rid of the MAKE utility all together and
replace it with a more specialised own version, but these are still in the initial stages. The current system is also quite nice
and �exible.

The currently used make is GNU make, it's available for nearly all platforms. However there are some platform speci�c
oddities listed below.

Linux The only without much oddities. Of all Unices, Linux uses relatively a lot GNU tools, and less tools descending from
the original unix. If there is a make or make-package on Linux it is most likely GNU.

*BSD The default make is a pmake variant which is slightly di�erent from GNU's. The make�le template used by FPC
isn't compatible with pmake at this moment. (hint, hint) GNU make is installable from the ports tree, usually as
devel/gmake. Don't forget to put the bin directory of the ports-$PREFIX (/usr/local/bin, /usr/pkg/bin etc) into your
path, and substitute all use of make by �gmake�. In practice this is no big problem, since gmake is generally available
on BSD systems, installed as dependancy of a lot of development related packages.

BeOS On my installation (BeOS 5 Personal Edition) both binutils and GNU make came with the developper kit.

OS/2 I honestly don't know. There are EMX and native versions, and of course dos also. Afaik FPC used to be EMX
based, but is currently gearing towards native. I'll have to research this myself �rst :-)

Dos/Go32V2 Uses DJGPP Go32V2 utilities. This because FPC uses the go32v2 extender, and for safe nesting of programs
using an extender, all extenders have to be the same. Including the utils :-)

Netware Not even an idea. I never saw this port operational.

win32/win64 Use the mingw set, and preferably the one distributed with the most recent FPC release. See below.

wince My experiences are limited to CE as crosscompilation target. Some people have e.g. NAS boxes that might allow
bootstrap FPC on a WinCE based host.

Mac OS X Come with Apple Developer tools (which are installed with XCode on 10.3). Using generic Unix libraries like
mysql, ncurses, postgresql etc might require FINK.

The situation on win32 often confuses people. This mainly because there are at least three available sets of the above
utils (ar,ld,as,make) that run on Windows. Any mixing (one util from one category, one from the other) can also lead to
unpredictable results. Anyway, the three candidates are:

Mingw (sometimes called mingw32) which is the one to use. Win32 native tools with a real win32 feel. (driveletters and
backslashes in paths etc) Preferably versions distributed with FPC releases, since they might include FPC speci�c
critical patches. E.g. at a certain point it turned out that mingw tools only searched for a capitalised PATH variable,
and not one spelled like �Path� which is common on NT based Windows versions. See the win32 speci�c part of the
FAQ on the FPC website for more info.

Cygwin provides maximal compabilitywith Unix, and can be seen as a Unix compability layer. FPC however is really native
on windows, and having half a windows, and half a (compability) unix build system is hard to maintain. FPC does
compile with a current Cygwin install though, but the resulting compiler is no cygwin program. Also cygwin programs
need cygwin1.dll in the correct version . Note : FPC can link to cygwin, however doesn't need it for operation (except
for the textmode IDE). Recently, Cygwin improved in native path support, if the paths are fully quali�ed. Mingw is
still better, but cygwin is usable for emergency operation.

go32v2 Go32v2 is dos based, and used via the dos compability system of Windows, don't use it with the win32 compiler,
it would be like using the win32 tools via Wine on Linux :-)

A common problem I encountered on win32 is putting the cygwin �bin� directoryin the win32 search path. The mingw
make.exe �nds the cygwin shell, and tries to execute certain programs with it. Cygwin has improved a lot recently though,
and currently this seems to work again, at least if everything is situated on one drive (one can recompile FPC with only
cygwin and a FPC commandline compiler).

3which can be found in fpc/utils/fpcm/fpcmake.ini

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 11

Note that some other development tools (Borland, Microsoft, java) might also package a make version. Always put FPC as
the �rst directory in the PATH.

Due to some new developments with parallel compiling using the FPC make�les, make 3.80 is strongly recommended
as of FPC 2.1.1 (januari 2007 and later). Unix people with dual cores and up to date source trees might want to try
�make -j 2�.

1.2.5 FPC itself. ppc386, ppcppc, ppcsparc, fpc.

Free Pascal is written primarily in itself, in the Pascal dialects it supports. This has some consequences for beginning the
bootstraps.

• A normal build of FPC is pretty much only doable with FPC as starting compiler.

• Bootstrapping from Delphi was possible for a while under certain circumstances, but requires some skill, since the make-
�les don't support it. Delphi compability has been neglected, since too many Delphi bugs popped up, and keeping it
compilable was a problem. Somewhere between 1.9.4 and 1.9.6 most Delphi workarounds were removed. D2005 was
never tested. The possibility with Delphi as starting compiler probably failed because while Delphi would have been
great from an availability point, it was easier to use FPC because of Delphi's bugs.

• Bootstrapping from TP should possible for 1.0.x versions and earlier. 1.1.x uses delphi classes. However already quite
some mastership was required for this, since the compiler is a large program, and the single datasegment limitation of
TP was severe.

• Bootstrapping from GNU GPC or p2c is not doable. Their TP modi are not even close to being TP/BP compatible
enough, and FPC 1.1.x and beyond need Delphi compability.

• Bootstrapping though VP might be doable in theory, at least for 1.0.x with some considerable skill. This has never
been tested though, since FPC is better on nearly all platforms anyway for basic recompilation, and less buggy.

The reasons for these choices belong in an advocacy document rather than here.4

However practically there is one major disadvantage: you need FPC to build FPC, and one major advantage: FPC generally
needs much less tools installed to build, compared to e.g. a GCC build. One also needs only a suitable compiler binary to
bootstrap FPC, not even a fully �edged FPC installation. (on platforms that don't come with it, you need the GNU build
tools though, see paragraphs above), and there are essentially no library requirements.

With the internal linker, in time even the GNU tool requirements may disappear, allowing a single compiler binary to fully
bootstrap the whole FPC/Lazarus project.

The �le you need to start an ordinary snapshot build is �ppc<processor>�, so ppc386 for x86, ppcppc for PowerPC. ppcsparc
for Sun Sparc V8 systems, ppcx64 for x86_64 (64-bit x86) etc. Till now these �les always have been statically linked. so
there is only one Linux compiler, one FreeBSD compiler etc. Kernel, library and distribution versions don't matter. (except
maybe major kernel changes in extreme, rare cases like Linux 1.0.x to 2.0.x)

For crossbuilds to the same processor but a di�erent OS you don't need a special cross-compiler. Only for crossbuilding to
di�erent processors you'll need a di�erent one.

Besides this, there is the � fpc� binary. This is a common frontend to all ppc<cpu> compilers on a system, one that compiles
for the current architecture and one that compiles for the rest. The reason for this is that one can use one binary, and specify
the processor with -P. So

fpc -Ppowerpc compileme.pp

will compile �compileme.pp� using the PowerPC (ppcppc) compiler if everything is set up correctly. But we'll get into that
later :-)

The fpc binary can also be used to set compiler version:

fpc -V1.0 compileme.pp

will execute the default compiler (ppc<current processor>) with -1.0 su�xed. Combining with -P is possible. fpc -Ppowerpc
-V1.0 will try to run a binary ppcppc-1.0 as the real compiler. Specially on Unix this is nice, since only a couple of symlinks
allow to switch versions easily.

Combined with a masterfully created fpc.cfg �le one can build very powerful crosscompiling systems that autoselect the right
targets. We'll get to that later.

4The FAQ lists some reasons, but IMHO not all.

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 12

1.2.6 Other tools

Sometimes there are other platform dependant tools. Most notably the Windows resource compiler windres to compiler
resourcescripts (*.rc) and dlltool to generate importlibs for FPC generated DLLs so that certain other compilers (MSVC,
mingw) can use them.

1.3 Obtaining source

1.3.1 Introduction

Right after the FPC 2.0 release, the FPC project change to use SVN as source version managament system, for reasons
mostly related to merging and branching.

Usually when building a snapshot, the source is obtained via SVN, and comes as a large sourcetree with fpc/ as the root
directory of the repository. However the source is usually also downloadable as an archive from the main site56. This archive
is getting larger each month though, and is already 25M zipped.

A better way is to get the sources via SVN, which allows to upgrade sources to more recent versions incrementally. (i.o.w.
the second time, it only downloads changes)

1.3.2 SVN Modules

The FPC and Lazarus source is spread out over several SVN modules:

Module Description

fpc The core FPC repository. Contains compiler, RTL, textmode IDE and most non visual libraries

fpcdocs The FPC documentation source (in LATEXand fpdoc XML format)

fpcprojects Projects not yet suitable for distribution together with FPC are parked here. (includes IRC bot)

fpcbuild Contains fpc and fpdocs tree as well as the install and demo dirs and a make�le for release packaging.

lazarus The Lazarus project (visual classes library LCL and the Lazarus IDE/RAD)

1.3.3 Downloading source via SVN

To check out a module, use the follow line:

svn co http://svn.freepascal.org/svn/<module>/trunk <module>

#

Examples:

#

FPC

svn co http://svn.freepascal.org/svn/fpc/trunk fpc

#

fpcdocs

#

svn co http://svn.freepascal.org/svn/fpcdocs/trunk fpcdocs

#

fpcprojects (has no branches, maybe you don't need /trunk at the end)

#

svn co http://svn.freepascal.org/svn/fpcprojects/trunk fpcprojects

#

lazarus

#

svn co http://svn.freepascal.org/svn/lazarus/trunk lazarus

To check out a branch, replace �trunk� in the above lines with the branches/<branch name>. E.g. to check out the branch
�xes_2_4:

5\href{ftp://ftp.freepascal.org/pub/fpc/snapshot/v24/source/fpc.zip}{ftp://ftp.freepascal.org/pub/fpc/snapshot/v24/source/fpc.zip (2.2.x)}
6\href{ftp://ftp.freepascal.org/pub/fpc/snapshot/v25/source/fpc.zip}{ftp://ftp.freepascal.org/pub/fpc/snapshot/v25/source/fpc.zip (2.5.x

development series)}

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 13

svn co http://svn.freepascal.org/svn/fpc/branches/fixes_2_4 fpc-2.4.x

Speci�c releases are tagged with a tag that is formated like RELEASE_2_4_0 , and can be checked out like this:

svn co http://svn.freepascal.org/svn/fpc/tags/RELEASE_2_4_0 fpc-2.4.0

1.3.4 Updating the source via SVN

The advantage of getting source via SVN is of course the incremental updating. This is very simple with SVN, simply use
�svn up x�, if x is a directory where you have checked out something before. http path, �xes and branches are automatically
read from the system.

Examples:

svn up fpc

#

svn up fpc-2.4.0

1.3.5 Reverting SVN checkouts

Something new in SVN is reverting. If local edits cause con�icts when updating your checkout, or if you want to be 100%
sure that there are no local edits, you should revert your checkout, to make sure that your local copy is really in sync with
the SVN server.

You should do this if you're having a problem that other people on IRC and maillists can't duplicate, and your starting
compiler is correct.

Examples:

svn revert -R fpc

1.3.6 Exporting (win32 users, read this!)

Exporting is basically retrieving a local working copy from a checkout. Typical reasons to build in an export instead of a
checkout are:

• You are doing a release build. E.g. making RPMs, debs, freebsd ports entries etc.

• You are building on win32 , and want to use �make install� to install the build, AND you want to install examples.

The problem on windows is that some tools get confused by the read-only attributes set on adminstrative �les by some SVN
clients. Since svn export only copies the repository's content, and not the administrative �les, this is a good workaround.
Exporting is e�ectively copying, so this workaround takes about the same time and space as manually copying the checkout.

The format of the export command is:

svn export path\to\checkout exportdirectory

Example:

svn export d:\fpc fpcexport

or

svn export /usr/local/src/fpc fpc

If the second argument already exists, SVN will refuse to do this. In that case use �force to force svn to update.

Note 1: I haven't tested this yet, but cleaning the repository before exporting could speed up somewhat, specially on
windows.

Note 2: For a faster solution see the build tricks section.

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 14

1.3.7 More info about SVN

More info about FPC and SVN can be found here http://www.freepascal.org/wiki/index.php/SVN_Migration

1.4 Extension conventions

FPC de�nes some extensions that need some clari�cation:

.o The actual code of a compiled unit or main program

.a The actual code of a compiled unit or main program when smartlinking.

.ppu The rest of the compiled unit that is not actual code. (like information about directives that where de�ned when
compiling, the parsed interface etc)

.s Assembler code (to be assembled .o) generated by the compiler.

.as Assembler code in source form (there never was a pascal equivalent). Usually program startup code.

.s �les. .rst resourcestring �les for internationalisation.

.$$$ temporary �les. Can be safely removed usually

.res Windows or OS/2 resource �le

link.res Linker script �le. Contains which �les make up the binary, and what external libraries are used.

ppas.sh (or .bat) batch�le that calls the linker with the correct arguments.

*.lrs Lazarus resources, old style

*.rc Resource source �le, to be processed by windres to .res

The extensions on win32 originally endded in �w� (*.ow, *.ppw), which was done to avoid confusion with dos compilers on the
same system. However this has been superceded by a better directory structure which was needed for easy crosscompiling,
and in the 1.1.x/1.9.x branch the extensions for win32 are renamed back to .ppu/.a/.o

So in the FPC distribution you will �nd a .ppu, an .a and an .o per compiled unit.

1.5 Directory layout

Essentially the FPC layout is quite �exible. The binary (ppc386, ppc68k or ppcppc) must be able to �nd a con�guration
�le, and that �le can specify the rest. So the layouts described here are the default layouts as installed by the releases, or as
planned for future releases. (the latter of course are mainly the multi processor design)

The base installation of FPC has these main categories:

binaries The base binaries (fpc, ppc68k and ppcppc, ppcsparc, ppcx64) must be in the search PATH of the OS. If you
execute fpc, fpc must be able to �nd the other ones (ppcppc, ppc386 etc), also via the PATH.

fpc.cfg The binary must be able to �nd the con�guration�le in one of the defaultlocations as speci�ed for that OS. (see
platform dependant sections)

units The con�guration�le must de�ne the correct path to the RTL and other packages compiled for that platformand cpu.
This is usually a tree. Crosscompile units also belong in this tree.

(binutils) The binutils (LD,AS,AR) have to be in the PATH, or their directory should be speci�ed in the fpc.cfg �le or on
the commandline with the -FD parameter. On operating systems that don't install the binutils by default, these are
installed by the FPC installation process in the same directory as the main binaries, so this is usually not a problem
when not crosscompiling or mixing two FPC installations (e.g. a DOS and Windows installation on one machine).
Note that specifying in the fpc.cfg �le only works when compiling programs by hand. When compiling a new compiler,
the fpc.cfg �le is ignored by the make�le.

http://www.freepascal.org/wiki/index.php/SVN_Migration

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 15

Besides these there are source tree, documentation,the compiler localisation (language) and example directories. However
these are only interesting for real release distribution engineering,and don'tin�uence the workingsof the compileritself. This
because the compiler has the source already in compiled form in the .o, .a and .ppu �les in the units directory. The place
of the source doesn't really matter. The only thing that needs the source directory for automated processing is lazarus, and
one can enter any path in Lazarus' FPC source dialogue.

When writing paths in fpc.cfg, some substitutions are automatically done, e.g.

$FPCTARGET is replaced by the architecture - operating system combination you are compiling for. (e.g. i386-linux)

$FPCVERSION is replaced by the version of the FPC compiler reading it, and �nally

$FPCCPU is replaced by the processor which the compiler is targeting.

$FPCOS is replaced by the operating system.

$FPCFULLVERSION is replaced by a compiler version with an extra patchlevel. (2.4.x)

$FPCDATE is replaced by the current date.

Since �lesystems hierachies di�er with the OS, I'll put some OS speci�c information in the following sections.

1.5.1 Unix (and full clones like Linux)

Under Unix, most directories are relative to the so called pre�x. A pre�x is a kind of root directory for package installing.
Common pre�xes are /usr, /usr/local, /usr/exp and /usr/pkg (the last one is common on NetBSD).

The usual convention is that programs that come with the base-distribution go into /usr, and hand-compiled or hand-installed
packages go to /usr/local. However the de�nition of base-distribution varies with the distribution and OS. The main idea is
to give root (the administrator) trusted users the ability to install and manage less important packages in /usr/local while
keeping the base system only writable for the administrator (group) himself. Linux distributions are traditionally more likely
to install packages into /usr instead of /usr/local, but not every distribution does that. �man hier� should list some of the
conventions used on your Unix version.

If directories are relative to a pre�x, they are noted as $PREFIX/the/rest/of/the path. Note that this has nothing to do
with $FPC<x> substitutions in fpc.cfg. $PREFIX is shellscript notation for �get content of environmentvariable PREFIX�.
Compiled units go into $PREFIX/fpc/$FPCVERSION/units/$FPCTARGET. Units used for crosscompiling also go into
$PREFIX/fpc/$FPCVERSION/units/$FPCTARGET.

Binaries go into directory $PREFIX/bin, however sometimes these are only symlinks to the actual �les in $PREFIX/lib/fpc/$FPCVERSION
directory to easily switch versions. Since the binary can �nd its own unit �les using versioned info in fpc.cfg when properly
set up, usually the default binary is the only thing that needs to be swapped.

The place where con�guration �les are searched on unix are: /etc/fpc.cfg, ~/.fpc.cfg. $PREFIX/etc/fpc.cfg is searched from
1.9.8 onwards. (note; ~ means home directory on Unix)

So let's take $PREFIX=/usr/local, $VERSION=2.4.0, $FPCCPU=i386, $FPCOS=freebsd and $FPCTARGET=i386-freebsd
as an example, and see what �le goes where:

File(s) location remarks

fpc /usr/local/bin

ppc386 /usr/local/bin actually symlinked to /usr/local/lib/fpc/2.4.0/ppc386

ppcppc /usr/local/bin actually symlinked to /usr/local/lib/fpc/2.4.0/ppcppc

rtl for i386-freebsd /usr/local/lib/fpc/2.4.0/units/i386-freebsd/rtl

rtl for i386-linux /usr/local/lib/fpc/2.4.0/units/i386-linux/rtl (cross operating system compiling)

rtl for powerpc-netbsd /usr/local/lib/fpc/2.4.0/units/powerpc-netbsd/rtl (cross architecture and OS compiling, endianness)

rtl for x86_64-win64 /usr/local/lib/fpc/2.4.0/units/x86_64-win64/rtl (cross arch, OS, wordsize)

Note: 1.9-1.9.4 stored libraries for cross compilation in $PREFIX/lib/fpc/$FPCVERSION/cross/$cpu/$target. Because all
platforms are now fully quali�ed with architecture, a separate directory for CPU is no longer necessary, and FPC 1.9.5 and
above store everything in $PREFIX/lib/fpc/$FPCVERSION/units and below.

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 16

1.5.2 Windows and Dos

The windows and dos case is pretty much the same. Except that $FPCTARGET=i386-win32 for windows, and $FPCTARGET=i386-
go32v2 for dos. It is advised to avoid using spaces in directory names. While (win32) fpc can handle it, some
versions of the binutils and other tools can not (yet), or need carefully placed quotes.

Both these two OSes have a speci�c directory with all FPC related �les (including the documentation etc) in them, default
is usually used to be c:\pp, but has been changed to c:\fpc\2.4.0 since 2.0. I call this path $INSTALLDIR. Usually there
aren't other versions in the same $INSTALLDIR A di�erent version means a di�erent $INSTALLDIR, at least in the default
situation.

All binaries go into $INSTALLDIR\bin\$FPCTARGET. This directory should be in the PATH. This directory is quite full,
since there are other tools and utilities installed. However if the target is marked to require 8.3 compatible naming (Go32v2,
OS/2), the binary path is not $FPCTARGET (e.g. bin/i386-go32v2) but just $FPCOS (e.g. bin/go32v2).

Compiled units go into $INSTALLDIR\units\$FPCTARGET and deeper, at least under 2.0+.

Con�guration �les are searched in the same directory as the binary ($INSTALLDIR\bin\$FPCTARGET), but if a environ-
ment variable HOME exists also in %HOME%/.fpc.cfg.

So let's assume $INSTALLDIR=c:\fpc\2.4.0 and the default $FPCTARGET=win32

File(s) location remarks

fpc c:\fpc\2.4.0\bin\i386-win32

ppc386 c:\fpc\2.4.0\bin\i386-win32

ppcppc c:\fpc\2.4.0\bin\i386-win32

rtl for i386-win32 c:\fpc\2.4.0\units\i386-win32\rtl (cross architecture and OS compiling)

rtl for i386-linux c:\fpc\2.4.0\units\i386-linux\rtl (cross operating system compiling)

rtl for powerpc-netbsd c:\fpc\2.4.0\units\powerpc-netbsd\rtl

rtl for x86_64-win64 c:\fpc\2.4.0\units\x86_64-win64/\rtl

Cross binutils c:\fpc\2.4.0\cross (not installed by default setup)

libs for i386-win32 c:\fpc\2.4.0\libs\i386-win32 (not installed by default setup)

libs for i386-linux c:\fpc\2.4.0\libs\i386-linux (not installed by default setup)

1.5.3 Where are my units?

Starting with later versions of FPC 1.9.5, the fpc make�les create a directory to store the created units. The main reason
for this is building for multiple targets without cleaning in between.

So when just build (not installed), the rtl units �les are in fpc/rtl/freebsd/units/$FPCTARGET. This is a silly example of
course, since the RTL is platform speci�c, but this change is systematic, so for the RTL too.

1.6 The fpc.cfg con�guration �le

Note: Former versions used ppc386.cfg as con�guration �le. Even latere 1.0.x versions already support fpc.cfg. In time
ppc386.cfg will be dropped, so please use fpc.cfg.

A correct con�guration �le should at least do the follow things:

1. (most important) Provide the place where to �nd the correct precompiled units for the current selected operating
system and architecture. In IDE's this option is usually called UNITPATH Option: -Fu

2. If other binutils then for the default platform need to be used (like in the case of crosscompiling), then fpc.cfg should
allow the compiler to �nd them. I don't know what name IDE's typically use for this, but BINUTILS PATH or GNU
UTILS PATH would be appopriate Option: -FD

3. Extra paths where static and shared libraries are searched. Often called library path Option: -Fl

4. (minor) By default the compiler shows only very little errors, warnings and information. It's convenient to add some
verbosity parameters to fpc.cfg. Option -vihw -l. 7

7The warning system is currently being expanded to have more �exibility.

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 17

5. (crosscompiling) Binutils for cross compiling are often pre�x with cpu-operatingsystem(e.g. i686-ming32),this pre�x
can be speci�ed using -XP<pre�x> parameter, or using make�les using BINUTILSPREFIX. Option -XP

There are other interesting possibilities of fpc.cfg, (like internationalised errormessages, setting the compiler in a di�erent
mode per default, always to try smartlinking etc) but these are the important ones for normal development.

Note: Keep in mind that when using the make�les supplied with the FPC source, the fpc.cfg is NOT read. This is to avoid
problems with two RTLs, the old and the new one, when bootstrapping the system.

1.6.1 Unit path -Fu

The -Fu case is pretty much as described in the directory layout paragraphs (1.5), there are two things in which the -Fu
compiler option di�ers from the directory layout as described before. If I append an asterisk (*) to a path, it means that it
should search all directories below that directory too, and that the layout for crosscompiled units is a bit di�erent.

We can use the directive FPC_CROSSCOMPILING to detect crosscompilation. The FPC manual has a list of other de�nes
that can be tested.

Unix: If we assume that the compiler is installed to PREFIX /usr/local, and we are using FreeBSD/i386 as host OS, this
becomes:

This is pretty generic for OSes with *nix filesystem layout

-Fu/usr/local/lib/fpc/$FPCVERSION/units/$FPCtarget/*

#....or suitable for crosscompiling. Note that the /cross/ dir is not necessary

and only added as example.

#ifdef FPC_CROSSCOMPILING

OS not default -> CROSS

-Fu/usr/local/lib/fpc/$FPCversion/cross/$fpctarget/units/*

#else

#ifndef cpu86

Processor not default -> CROSS

-Fu/usr/local/lib/fpc/$FPCversion/cross/$fpctarget/units/*

#else

-Fu/usr/local/lib/fpc/$FPCVERSION/units/$FPCtarget/*

#endif

#endif

Win32 and Dos installed in c:\fpc\2.4.0

-Fuc:\fpc\2.4.0\units\$FPCtarget*

or suitable for crosscompiling

OS not default -> CROSS

-Fuc:\fpc\2.4.0\units\$fpctarget*

win32 binutils are in the path

#ifndef win32

set path to crossutils. Assuming in one dir.

-FDc:\fpc\2.4.0\bin\cross

this is not 100% safe. GNU and FPC target naming differ

-XP$FPCTARGET-

#endif

Keep in mind that extra paths (e.g. for own custom packages) can be added. There is also no reason not to use $FPCVER-
SION in the win32 case. It is just an example.

1.6.2 Binutils path -FD

The problems with binutils

1. We only have to set -FD if we set up for crosscompiling. Either when cross compiling to a di�erent processor or a
di�erent OS. So we have to determine default OS and CPU somehow.

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 18

2. Under Unix, there are usually speci�c dirs for crossutils, but the exact place and name di�ers with version. Win32
doesn't have something like that at all. For win32 I propose an example layout as described above.

3. FPC and GNU platform naming di�er

Unix : As an example I take FreeBSD on an ordinary PC. The location below (/usr/local/processor-operatingsystem) is
where the binutils base distribution installs cross compiled utils by default under FreeBSD. However sometimes how FPC
names an OS can di�er from how the binutils name it. In that case you have to be more verbose, which I have done for the
case of crosscompiling to windows8 .

So our con�guration �le becomes:

#ifdef FPC_CROSSCOMPILING

other binutils if OS differs

#ifdef win32

win32 is an exception

FPC OS name : win32 Binutils OS name : mingw32

FPC processor: i386 Binutils processor: i686

-FD/usr/local/i686-unknown-mingw32/bin

#else # we hope that the fpc and binutils name match:-)

-FD/usr/local/$FPCTARGET/cross

#endif

#else

#ifndef cpu86

other binutils if processor differs

-FD/usr/local/$FPCTARGET/cross

#endif #endif

Win32 and Dos: Pretty much the same. However contrary to Unix I haven't really tested this. Again I assume FPC to be
installed in c:\fpc\2.4.0 .However the binutils are in d:\binutils and deeper and named like under *BSD:

#ifndef win32

other binutils if OS differs

-FDd:\binutils\$FPCTARGET\bin

#else

#ifndef cpu86

other binutils if processor differs

-FDd:\binutils\$FPCTARGET\bin

#endif

#endif

Using make�les

When using make�les, one can set the -FD parameter by passing CROSSBINDIR=<path> to make. This ensures that the
parameter is passed correctly from make�le to make�le (in nested directory hierarchies).

1.6.3 Binutils pre�x, all binutils in one directory

A somewhat newer addition is the -XP parameter which sets a pre�x for all binutils, so if you add -XPbla-die-bla- to the
fpc commandline then all calls to as and ld will be pre�xed with bla-die-bla- . The main reason for this is that by default,
cross compiled binutils are named <cpu>-<target>-<�lename>,and not just <�lename>.

When doing a cross snapshot (or cycle), setting the make variable BINUTILSPREFIX will make sure that -XP is passed on
the right moments.

If we assume the binutils for cross compiling are all in one directory, the above piece of code becomes:

8Lazy people simply would make a symlink from the fpc naming to the binutils naming. However being lazy is not allowed for
tutorial writers.

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 19

#ifdef FPC_CROSSCOMPILING

other binutils directory if processor or target OS differs

-FD/usr/local/cross/bin

set prefix to select the right ones from that directory:

-XP$FPCTARGET-

#endif

This assumes that binutils naming of platforms is the same as FPC's. It isn't however, there are a few exceptions:

Usual name FPC name Binutils name ppc<x> name

(32-bit windows) win32 cygwin or mingw32 (OS not CPU)

i386 or x86 i386 i386,i486,i586,i686 386

Sunos/Solaris sunos solaris

PowerPC powerpc powerpc ppc

So for these targets we would have to make exceptions. (see e.g. script code in the fpcbuild/install repository, e.g. samplecfg
and install.sh)

1.6.4 Library path -Fl

The library path is where static libraries (and shared libs under unix) can be found. While this is very important for the
Unix platform, the FPC compiler on windows and dos also can link to GCC (and variants) libraries, so FPC must be able
to �nd them.

The library path is of course target and processor dependant. One couldn't link FreeBSD/x86 libraries to a Linux/Powerpc
binary. So essentially we are doing the same trick as with the unit path. If the default targets are used, on unix it is set to
the default directories, otherwise it is set to some hierarchy where the user is supposed to install his cross libraries.

Unix : As an example I take FreeBSD on an ordinary PC, because most BSDs, specially on ordinary PCs have a �compability�
Linux libraryset to run proprietary Linux programs for which no FreeBSD version exists. This mode is called the Linuxator9.
The Linuxator libs are usually SUSE based and in /compat/linux/ and deeper. NetBSD has a huge set of such emulations.
Anyway, here is the snippet, it assumes the user to build a hierarchy of cross libs under /usr/local/crosslibs

#undef specialoscpu

#ifndef FPC_CROSSCOMPILING

#define specialoscpu

DEFAULT

libraries outside base are installed with PREFIX=/usr/local

-Fl/usr/local/lib

however X stuff is installed with PREFIX=/usr/X11R6

-Fl/usr/X11R6/lib

#endif

#ifdef linux

#ifdef cpu86

CROSS, BUT SPECIAL, FreeBSD optionally has a Linux userland on board

for the linuxator. Usually it is some SUSE version.

#define specialoscpu

-Fl/compat/linux/lib

-Fl/compat/linux/usr/lib

-Fl/compat/linux/usr/X11R6/lib

#endif

#endif

libraries not existing on target by default. Reverting

to special cross directories

#ifndef specialoscpu

-Fl/usr/local/crosslibs/$FPCTARGET/lib

-Fl/usr/local/crosslibs/$FPCTARGET/usr/lib

-Fl/usr/local/crosslibs/$FPCTARGET/usr/local/lib

-Fl/usr/local/crosslibs/$FPCTARGET/usr/X11R6/lib

#endif

9The linuxator is strictly speaking an emulator. However the emulation layer is so thin (a few 10's of kbs) that there is no noticable performance
loss. Since all libs are in memory twice (Linux+FreeBSD) it eats some extra memory though.

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 20

Win32 and Dos: Exactly the same idea. Some directory with the hierarchy (d:\crosslibs for now), but none as default.
If you have a suitable gcc equivalent (djgpp for dos, cygwin and mingw for win32), you could add it to the space for the
default.

#ifndef win32

other binutils if OS differs

-Fld:\crosslibs\$FPCTARGET\lib

-Fld:\crosslibs\$FPCTARGET\usr\lib

#etc

#else

#ifndef cpu86

other binutils if processor differs

maybe somebody does a port for win32/Sparc or so.

-Fld:\crosslibs\$FPCTARGET\lib

-Fld:\crosslibs\$FPCTARGET\usr\lib

#else

DEFAULT

#endif

#endif

1.6.5 Verbosity options

Well, there is not much to tell. The default is ok, and I never change it (I wrote it down below for completeness), for more
info see the manual. Note that any verbosity setting in fpc.cfg can be overriden on the commandline (e.g. for debugging,
typically uses -va on the cmdline)

write FPC logo lines.

-l

Display Info, Warnings, Notes and Hints

-viwn

1.7 The order to compile parts of FPC

Packages is a bit of an ambiguous term when used in the FPC project10. Sometimes �packages� refers exclusively to the
separate unit sets in the packages/ directory of the source tree, sometimes it also includes the other separately compilable
parts of the project (like compiler, rtl, fcl, ide, fvision, lazarus, installer and utils). In this paragraph it's the latter one.

The directory structure of the packages has been reorganized starting with FPC 2.2.4. 11. Most importantly, the fpcmake
system now �gures out its own dependancies, so all packages (including FCL and FV) could move to /fpc/packages. This
great simpli�es building and maintenance of the packages. The units of the FCL were also regrouped into multiple packages.

Of course there iss till a certain sequence one should follow when building FPC, which is hardcoded in the top Make�le.
This because some packages need other packages and need to be build �rst. The usual order is:

1. bootstrap the compiler (make cycle) 3x compiler, 3x rtl

2. Rebuild the RTL smartlinking

3. Build the packages directory including the FCL and FV packages.

4. Build the textmode IDE.

5. utils/ directory including fpcmake in utils/fpcm

Lazarus can be built after the main build (with or without IDE). However install the main build �rst. Some directories are
not built at all in a standard build of the fpc repository:

1. demoes and example directories of packages

2. the regression testing suite (tests/)

Examples are often compilable by descending into the package directory and executing �make examples�.

10See alsohttp://wiki.freepascal.org/packages http://wiki.freepascal.org/packages
11This reorganization was made possible with improvements in the fpcmake system. However in time, the fpcmake system will disappear, and

be replaced with the fpmake/fppkg system that is already included for testing in 2.2.4+

http://wiki.freepascal.org/packages

CHAPTER 1. BASE PRINCIPLES, NAMING, VERSIONS, REQUIREMENTS ETC 21

1.7.1 Some interesting build scripts

Some of these principles are used in some of the scripts used to build releases, test crosscompiling etc.

• fpc/installl/install.sh is the installer script for unix. Nicely demonstrates platform name (GNU->FPC) conversion

• fpc/install/cross/buildcrossbinutils is a script to mass-build cross binutils

• fpc/install/cross/buildcrosssnapshot is an attempt at building cross snapshots. Works in principle, however the shared
linking of mkxmlrpc and the textmode IDE are troublesome.

• fpc/install/makepack is a release building script. It requires the target name (i386-linux, i386-win32 etc) as parameter

1.8 Smart linking

Smartlinking (ld/gcc documentation calls it dead code elimination) essentially means avoiding linking of unused code into
the �nal binary.

The problem is that the GNU linker can do dead code elimination, but usually (read: with gcc) only does this on a compilation
unit level. In other words, it still will link in the entire unit when only one �le is used.

Newer binutils use can do deadcode elimination based on sections, however the problem with this is that it ups the version
requirements on binutils, which is a problem specially for operating systems as classic MacOS, older Mac OS X versions,
OS/2 etc. The new form is also not entirely stable yet.

Using the old style smartlinking, FPC circumvents this by generating a .o for each symbol in a unit. So each procedure,
method, variable or typed constant gets its own .o �le. Since this can be thousands of .o �les in a unit (unit Windows has
about 20000-30000),and the .o �les are added to an .a archive using GNU AR.

All together this is a pretty complicated process:

1. a unit is compiled by fpc to a lot of assembler source (.s) �les,

2. that get assembled by a lot of calls to AS to generate a lot of .o �les

3. that are read again by AR to form one .a �le

.... which is why smartinking performance really bene�ts from the binwriter (see II), which causes FPC to write the .a
directly without thousands of calls to AS.

Besides tightening code, smartlinking also solves a problem when a unit interfaces to a shared library (unix .so or win32
.dll) and certain unused calls aren't available. An example would be if unit windows contains calls added in later Windows
versions that you don't use for your program and you work on/for Windows 98. when not smartlinking, the whole of unit
windows would be linked in, and the linker wouldn't be able to �nd the calls from later Windows versions in the Windows
98 kernel32.dll and user32.dll.

Be careful when trying to guess the savings of smartlinking. Often people forget unit initialisation (both of the unit in
question, and the unit it USES) and all the classes, procedures and functions the initialisation uses are always linked in, and
units (even if they are unused) are always initialised, since the compiler can't see that the e�ect of the initialisation on the
working of the program is zero.

A word of caution: In C, an .o �le usually corresponds to one .c or .cpp �le, so one .a contains <n> .o's that correspond
to <n> .c's. However under FPC, when smartlinking per unit (.pp , .pas) the �le that is ultimately written is an .a which
contains a lot of .o's. So an FPC .a corresponds to one unit only. 12 An .o however is the same unit as the .a without
smartlinking.

A known problem with old style smartlinking is its memory usage. Ld doesn't manage a lot (100000+) of small object �les
(.o) e�ciently, and memory requirements increase enormously. Smartlinking a fully static Lazarus wasn't possible because it
bombed out on my OS' 512 MB memory limit for ordinary processes, a rough estimate of the memory needed was 1.5 GB.
A rule of thumb for memory usage in extreme cases is between 50 and 100 times the size of the �nal binary.

It seems that ld can do deadcode elimination nowadays, however the compiler needs to be adopted for this, and there is also
some movement in having an own internal linker. The advantages of this system is less memory use by LD, and the fact
that .a �les will disappear (in the new method, the smartlink data is added to the .o �les). However no matter how fast this
becomes usable, old style smartlinking is still needed for quite a while, for OSes with binutils that are not recent or complete.

12At least for now, developments in library generation might change this in time, but not before 2.4

Chapter 2

Standard building

The start of the FPC buildprocess is bootstrapping a compiler. Bootstrapping the compiler is the start of every build process,
because changes in the compiler source must be actived before one can start compiling the libraries. Usually the bootstrap
is only a minor part in an automised snapshot or full build. However some knowledge about the process can be handy for
crosscompiling purposes and development on FPC itself.

The other two typical build processes are building and installing a snapshot, and building a release. Somewhat less streamlined
are building the IDE and documentation. Building Lazarus on the other hand is fairly easy.

For the average user, building a snapshot and/or lazarus are the interesting parts.

2.1 Cleaning

2.1.1 Make clean

In nearly any place in the FPC tree a �make clean� will try to remove compiler generated �les of snapshot or cycle building.
A �make distclean� in the upper level is even a bit more thorough, and also removes �les generated while building releases
(zips etc)

Note that the make �les usually delete what they generate. So if e.g. the generation of certain �les depends on certain
make�le de�nes and/or compiler version, make sure that the right compiler and de�nes are passed to make.

A good check to see if the repository is clean, is to check standard output and -error of the svn update process. If you see
errors, then revert the SVN checkout.

2.1.2 make distclean

make distclean is the more rigorous way of cleaning. If you experiencing build problems, always do this �rst. If you have
snapshot scripts, add make distclean in the top level dir as a �rst line. This became a lot more important in 1.9.5, since
recent 1.9.5's store their units in a separate units/$fpctarget hierarchy. Cleaning before SVN update can speed up the SVN
update process signi�cantly, specially on OSes that have relatively slow directory searching (like windows and netbsd)

2.1.3 Cleaning of crosscompile builds

Note that the clean targets of the make�le only clean for current $FPCTARGET. To rigorously clean everything, kill all .o,
.a and .ppu �les, and then SVN update again, to recover the few .o �les in the FPC tree (mostly for testsuite tests relating
to C linking)

2.2 Bootstrapping: make cycle

�make cycle� is a bootstrap of the compiler, and builds the rtl and compiler at least three times.

22

CHAPTER 2. STANDARD BUILDING 23

The only starting compiler that is guaranteed to work is the most recent release compiler for that series1. So if you have a
problem in any aspect of building the FPC source tree and you are not using the most recent release compiler, please try
�rst with the most recent release compiler. It is possible to specify the name of the starting compiler (see below), so saving
the release compiler under some name (I'll use ppcrel from now on in this tutorial) is advised.

The make cycle process compiles RTL and compiler three times:

RTL 1st Since the we start with only the starting compiler, a new RTL must be built �rst before we can link a program.

Compiler 1st A new compiler is created. However the new compiler is still compiled by the release compiler, so newer
optimisation and changes aren't active yet in this binary. For that reason, both the RTL and the compiler have to be
rebuilt.

RTL 2nd So we rebuild the RTL and...

Compiler 2nd the compiler. However to make sure the compiler is deterministic (compiles the same program to the same
executable each time it is run), the compiler and RTL are compiled......

RTL 3rd again....

Compiler 3rd and after building the compiler for the third time the 2nd and 3rd compiler are compared to see if there
they are the same. If not, everything is compiled again. (for some rare secundary e�ects)

This entire process is run by simply type �make cycle� in the compiler directory. If you want to use an alternative compiler,
specify it with PP=[full/path/to/]<compiler>. When using the PP= option, use a compiler in the PATH or an absolute
path, not a relative path. Using a relative path usually won't work since during the process, the make utility changes
directories. If you try to bootstrap without a full instaltion, you sometimes need to specify FPC=[full/path/to/]<compiler>

Additional compiler options can be added using OPT=�<the options>�, often used options are turning on debugginginfor-
mation with lineinformation (-gl), and increase the verbosity level (-va). However since -va produces a _lot_ of output, it
is wise to pipe it to �le.

Some examples: 2

go to the right directory on unix

cd /fpc/fpc/compiler

go to the right directory on windows

cd /d d:\repo\fpc\compiler

do an ordinary make cycle:

make cycle

Use a starting compiler in the OS search PATH

make cycle PP=ppcrel

use a starting compiler with (unix) absolute path

and enable line info and debugging

make cycle PP=/fpc/startcompilers/ppcrel OPT=�--gl�

Use LOTS of verbosity in the process and redirect it to file.

make cycle OPT=�-va� >cycle.log

2.3 Compiling a snapshot; make all or make build

�Make all� is the most important build process, it essentially builds (but not installs) the general purpose parts of the standard
SVN tree (see 1.7), except sideways related stu� like documentation, examples and tests. Installing is one additional make�le
command.

In its simplest form, build a snapshot is checking out SVN (see 1.3.3), and changing to the top fpc/ directory and call �make
all�. Installing to the default location is done by executing �make install�.

cd /fpc/fpc make all

lots of building. Think 3 minutes on a XP2000+, 10-15 minutes on a 500MHz machine.

make install

1E.g. For the 1.9.x series, even though 1.9.6 and 1.9.8 will probably work, the only guaranteed starting compiler is 1.0.10!
2The lines starting with �#� in the example below are comments. Don't enter them

CHAPTER 2. STANDARD BUILDING 24

Installs the snapshot to the default location

(/usr/local/lib/fpc/$FPCVERSION and deeper probably)

#

or on Windows:

cd /d d:\repo\fpc

make all

make install COPYTREE=echo

(default is c:\pp\ and deeper)

If you track FPC SVN very closely, this is probably what you'll do quite often. However in some special cases, more
parameters are needed. Essentially this is building a snapshot. If you trick �make install� into installing in a di�erent
directory, the contents of that directory are essentially the snapshot.

The simplest variation is a di�erent starting compiler. This can be done by simply entering PP=<compiler> or PP=/full/path/to/<compiler>
after the �make all� prompt:

cd /fpc/devel/fpc

make all PP=/my/starting/compiler

lots of building. Think 3 minutes on a XP2000+, 10-15 minutes on a 500MHz machine.

make install

Installs the snapshot to the default location

(/usr/local/lib/fpc/$FPCVERSION and typically)

#

or on Windows:

cd /d c:\repo\fpc

make all PP=ppcrel

make install COPYTREE=echo

(default is c:\pp\ and deeper)

A standard confusing detail when installing a snapshot is that the target directory (e.g. /usr/local/lib/fpc/2.4.0) depends
on the version number. If you would follow the above sequence, and the generated compiler (say version 2.5.1) is not equal to
the starting compiler (say version 2.4.0), then make install will install into the wrong directory. The same goes for windows
(c:\fpc\2.4.0 ...) This can be solved by setting the compiler that is generated in the �make all� step as a starting compiler
to the �make install� step. This will ensure that the �make install� sequence gets the correct versioning info. Since we can't
use relative paths, this must be a full path:

cd /fpc/devel/fpc

make all PP=/my/starting/compiler/path/ppc386-someversion

#

Now install using the NEW compiler for the correct version info:

make install PP=/fpc/devel/fpc/compiler/ppc386

#

Installs the snapshot to the default location

(/usr/local/lib/fpc/$FPCVERSION and deeper probably)

#

and for windows:

cd /d c:\repo\fpc

make all PP=c:\fpc\startingcompilers\ppc386-someversion

#

and installing use the NEW compiler

make install PP=c:\repository\fpc\compiler\ppc386

Another very common variation is installing into a di�erent base directory ($PREFIX), this is done by setting a variable
INSTALL_PREFIX to the desired directory:

cd /fpc/devel/fpc

make all PP=/my/starting/compiler

#

Stack installs packages that don't come with the package system in /usr/exp

#

CHAPTER 2. STANDARD BUILDING 25

make install INSTALL_PREFIX=/usr/exp

#

Or on Windows:

My FPC directory is on d:\pp

#

cd /d c:\repo\fpc

make all PP=ppcrel

make install INSTALL_PREFIX=d:\pp

#

Or lets make a snapshot to upload to some site on some unix:

#

#

cd /fpc/devel/fpc

make all PP=/my/starting/compiler

#

Make a scratch directory in /tmp

#

mkdir /tmp/fpc

make install INSTALL_PREFIX=/tmp/fpc

#

archive

#

cd /tmp/fpc

tar cvzf /tmp/newsnapshot.tar.gz *

remove temp dir.

#

cd /tmp

rm -rf fpc

#

Finally, adding parameters to every compiler commandline is interesting too. This can be done by adding OPT='<the
parameters>' to the commandline. Often used parameters for this purpose are -d<xxx> to de�ne a value which can be
tested using e.g. {$IFDEF xxx} in the source, and -gl to include debug info. -va is also often used to debug the snapshot
building process. If you add -va, pipe the output to �le, or the building will slow down due to the massive amounts of output
written to screen.

Adding -gl when you are developping with FPC is a good habit, since it allows you to single step all of the FPC runtime
libraries in GDB (roughly equivalent to the �use debug .DCUs� options in Delphi). The generated snapshot gets somewhat
larger though.

cd /fpc/devel/fpc

make all OPT='-gl'

lots of building.

make install

Installs the snapshot to the default location

(/usr/local/lib/fpc/$FPCVERSION and deeper probably)

#

or on Windows:

cd c:\cvs\devel\fpc

make all OPT='-va' &> d:\buildlog.log

make install

#

multiple parameters are passed like this:

#

#

make all OPT=�-gl -va�

A word of caution: When I build snapshots for home use, I simply �make install� them over the old snapshot, at least if
�make all� succeeds. If you encounter errors during build or install, or even after install (like the notorious �can't �nd unit
xxx�, while it is there), try to remove the units/ directory in the FPC homedir, and re-execute the �make install� used to
install it. This should resolve the problem. If not check as much settings as you can check and read chapter 4

CHAPTER 2. STANDARD BUILDING 26

The problem is usually caused by units changing directories (or packages) in CVS. Since the usual procedure doesn't clean
the units/ directory, after installation two instances of that unit exist, which could lead to con�icts.

A good habit is to backup source tree before updating and the FPC install directory (compiler + units/ directory) before
installing a new snapshot. This just to make sure you will have a working compiler in case something goes wrong during
building or installing. This can easily be automated using a script that updates - backups - builds - installs. Since I'm not
that fond of unix scripting, I'll leave that as an exercise to the reader.

2.4 Current build procedure on win32

The situation on win32 with current SVN is a bit complex, so I decided to dedicate a separate paragraph listing the procedure,
combining all the above data. The problem on win32 is that SVN markes its own con�g �les as read-only, which leads to
problems with installing examples, and the cp utils provided with 2.0 have some unix path <-> windows paths troubles.
Most notable, they don't see \xxx\yyy as a windows path, but they do see d:\xxx\yyy as a windows path.

There are two solutions, the quick one simply omits the examples, the slow one does. Best is to do the slow one once in a
while to have up to date examples, and for the rest use the quick solution. The slow solution also �xes some problems with
older versions of the mingw utils.

Besides the read-only svn dirs problem, there is also a problem with Vista, and some mingw binaries have problems with the
casing of PATH statements.

2.4.1 The slow solution: SVN exporting

Before we begin, lets de�ne the directories (my defaults)

• d:\pp is the directory where I currently have installed FPC, and d:\pp\bin\i386-win32is the FPC dir in my %PATH%.

• d:\fpcSVN is the directory where I checked out the SVN repository. I don't build in it.

• d:\fpc is the directory where I export the SVN repository too.

• d:\fpcrel is the directory containing FPC 2.4.0 for bootstrapping purposes.

Another important issue: MAKE ABSOLUTELY SURE THAT THE CYGWIN DIRECTORY IS NOT IN THE
PATH!!!!!! The reason for this is that some mingw utils start using cygwin sh.exe when found, and that in turn swaps
some utils from the FPC delivered mingw tools to cygwin ones.

Then, to make and install a snapshot, we update the SVN:

cd /d d:\

svn up fpcSVN

Then we export it:

Cleaning improves performance,

cd fpc

make clean

cd ..

svn export --force fpcSVN fpc

Now, the building can start:

cd fpc

make clean all OPT='-gl' FPC=d:\fpcrel\bin\i386-win32\ppc386.exe

If this is successful we install: (all on one line)

make install OPT='-gl' INSTALL_PREFIX=d:\pp11 UPXPROG=echo

FPC=d:\fpcrel\bin\i386-win32\ppc386

CHAPTER 2. STANDARD BUILDING 27

Some things to notice:

• MAKE ABSOLUTELY SURE THAT THE CYGWIN DIRECTORY IS NOT IN THE PATH!!!!!!
Mingw/msys can also give problems, but more rarely (see 2.6.4)

• The options (OPT='-gl') are passed both to the make and install lines. This because sometimes due to unit dependancy
glitches and utils, a minor amount of code is (re) built during install. This goes for ALL build options that are not
installing related

• UPXPROG=echo avoids UPXing of the resulting binaries, so that the FPC binaries can be debugged. If you want as
small FPC bins as possible, leave it away, and add SMART=1 to both make lines. Note that UPXing wastes memory
that is more expensive than disk. 3

• We add �force to the SVN export line to force overwriting of the previous repository. If building goes wrong, day after
day, try erasing the export directory (d:\fpc) before exporting.

2.4.2 The Quick solution: COPYTREE

The quick solution exploits that the recursive copying is done using a command that is only used for copying the examples.
And updating the (installed) examples is not that important when daily updating, one typically wants to avoid the slow
SVN export step. The make�le macro that is used internally in the make�le for copying �les recursively is COPYTREE, we
then use the same trick as earlier to disable functionality by specifying the �echo� command:

make install COPYTREE=echo

2.4.3 VISTA speci�c topics: install.exe

Vista is quite draconian in some things, and there will be a lot more problems in the future, specially for release engineering.
(think about temporary �les in the root, not allowing writes in the appdir etc). However there is one little gotcha that also
a�ects normal building.

This gotcha is actually the result of an attempt to minimalize trouble for existing installers by automatically popping up
UAC (otherwise you would have to do �run as admininstrator� which is not end user friendly), but it was implemented
half-assed. Any EXE with install, setup or update in its name will pop up UAC, but.... UAC prompts fail for console apps
.4

The FPC build system uses GNU install (as ginstall.exe) to install �les with proper permissions, and that fails due to UAC.

The de�nition of the problem also implies the solution:

1. Copy the (g)install.exe binary to a new name without the keywords, I use �myinst.exe�

2. Pass GINSTALL=myinst.exe to the make commandline :

make install GINSTALL=myinst.exe

P.s. This Vista/Windows 7 problem is �xed in 2.4.0 by adding a manifest.

2.4.4 Putting it all together

Here is the batch�le that I use on Windows: (the FPC source tree is in d:\repo\fpc)

@echo on

set BASEDRV=c:

set SRCDIR=%BASEDRV%\repo\fpc

set PPCNAME=ppc386

set FPCSTART=c:\fpc\2.4.0\bin\i386-win32\%PPCNAME%

3http://wiki.freepascal.org/Size_mattershttp://wiki.freepascal.org/Size_Matters
4http://technet2.microsoft.com/WindowsVista/en/library/00d04415-2b2f-422c-b70e-b18�918c2811033.mspx http://technet2.microsoft.

com/WindowsVista/en/library/00d04415-2b2f-422c-b70e-b18ff918c2811033.mspx search for �keyword�

http://wiki.freepascal.org/Size_Matters
http://technet2.microsoft.com/WindowsVista/en/library/00d04415-2b2f-422c-b70e-b18ff918c2811033.mspx
http://technet2.microsoft.com/WindowsVista/en/library/00d04415-2b2f-422c-b70e-b18ff918c2811033.mspx

CHAPTER 2. STANDARD BUILDING 28

set LOGDIR=%BASEDRV%\repo

set INSTALLDIR=%BASEDRV%\pp11

REM some random opts.

set OPTS=-gl -dSAX_HTML_DEBUG -dUSE_MINGW_GDB

set COMMONOPTS=UPXPROG=echo COPYTREE=echo OPT="%OPTS%" GINSTALL=myinst.exe

rem === invariant part ===

cd /d %SRCDIR%

REM the building

make clean all %COMMONOPTS% FPC=%FPCSTART% 1> %LOGDIR%\buildlog.txt 2>&1

REM separate install step for crossversion purposes (and under Unix sudo) (on one line)

make install %COMMONOPTS% INSTALL_PREFIX=%INSTALLDIR% FPC=%SRCDIR%/compiler/%PPCNAME%

1> %LOGDIR%\installlog.txt 2>&1

Actually, I have several such �les, another one for 64-bit, a more advanced one for crosscompiling to wince etc. The win64
is a copy that di�ers only in �x86_64-win64� in the path and ppcx64 instead of ppc386. Note that all variables are in the
upper part of the batch�le, this makes it easier to port it to systems and just adapt the paths. Having several computers
with slightly di�erent path and drive layouts was the motivation to write them.

Unfortunately, pure batch�le is too limited to invest too much time in it.

2.5 Lazarus

Building lazarus is actually pretty much the same as building a snapshot, except that you have to enter directory lazarus/
instead of fpc/.

cd /repo/

svn update lazarus

cd lazarus

make all

you might want to check if the return value of �make install� is zero before installing.

make install INSTALL_PREFIX=/usr/local

#

At the moment of writing this there was some problem with installing lazarus. It seems that the make�les aren't entirely up
to date. I usually move the lazarus repository to /usr/local/lazarus, and set some symlinks to execute the right binary.This
isn't that bad, since you need to save the lazarus source for Lazarus' operation anyway.

2.6 Typical problems and tips

2.6.1 cannot �nd -l<xxxx>

Since Lazarus need to link to shared libraries, building lazarus tests an aspect of the FPC con�guration that hasn't been
tested by the parts above. A typical error is

Linking ./lazarus

/usr/libexec/elf/ld: cannot find -lglib12

lazarus.pp(334) Error: Error while linking

Closing script ./ppas.sh

This means that the linker, when building the �nal binary, couldn't �nd libglib12.a or libglib12.so. This is o�cially not an
FPC error, since glib is part of GTK, which belongs to the operating system. So maybe the gtk (or a corresponding gtk-devel
package) is simply not installed. There are four other possibilities:

1. While the package is installed, the package manger didn't create a symlink that refers the libglib.12.so.x to libglib12.so.
A quick cd /usr/local/lib; ln -s libglib12.so.2 libglib12.so would have solved that in this case.

CHAPTER 2. STANDARD BUILDING 29

2. (the actual problem in the case above) The directory with the correct �le isn't searched for libraries by FPC, because
you didn't specify the directory in fpc.cfg using -Fl. A mere adding of -Fl/usr/local/lib to /etc/fpc.cfg solved the
problem in this case.

3. You have a {$LINKLIB xx} in the source somewhere, or a -l<xx> parameter in some script or make�le that forces
FPC to try to link the library, but it isn't necessary anymore, grep is your best friend in such cases.

4. Your distribution for some reason names it libraries di�erently. Again, symlinking the searched name to the real name
is the solution.

2.6.2 CONTNRS or other FCL-BASE units not found

If the compiler can't �nd contnrs, this points to a problem with the -Fu paths. It probably means -Fu was wrong, but the
make�les managed to auto-add the RTL, and the contnrs (and other FCL-BASE) unit(s) are then the �rst unit that can't
be found. It can also point to duplicate .ppu �les or mixing of FPC versions.

2.6.3 Piping stderr and stdout to the same �le.

Piping stderr and stdout of the MAKE process to the same �le is useful for debugging the exact sequence on events. This is
easily done on Unix using >&.

Under Windows this is a bit more complex, but can still be done:

make install 1> filename.txt 2>&1

This line pipes the output of install's stdout to �lename.txt using 1>, but redirects stderr (2>) to stdout (&1) �rst.

2.6.4 (Windows) building and install fails with �invisible� errors

I suddenly had problems when doing �make clean all install� in one go. Further investigation of the output showed �ignored
errors� in make exit lines:

make: [fpc_clean] Error 1 (ignored)

however this would lead to an all stop after the all part:

make: *** [fpcmade.i386-win32] Error 1

This turned out to be a mingw related problem, a �le �sh.exe� was left in the project source. Another solution would be to
never use these commands in one go, but script them as separate ones.

I experimented with sh.exe because when using �make -j 2� it produces a warning that -j functionality is disabled if sh.exe
is not found. I assume the make�le must be adapted to ignore �ignored errors� instead of �all errors� somewhere.

Note: Despite the usage of mingw tools, it is not recommended to have the mingw directories in the path. Some of the
mingw tools (most notably make.exe when it detects sh.exe) apparantly change behaviour upon detection .

Chapter 3

Crosscompiling

(you need to have read the previous chapters too, since they already contain a lot of crosscompiling related info that I won't
duplicate here)

3.1 Basic crosscompiling of a snapshot

Let's have two examples, freebsd to win32-mingw crosscompile, and a FreeBSD to AMD64 linux one.

Assume we have the following items set up correctly:

1. Cross binutils have been compiled, and are installed with $PREFIX=~/cross. The correct pre�x has been identi�ed
(probably something like i686-ming32-and x86-64-linux-in our example)

2. The FPC sources are in fpc/

3. FPC was installed in /usr/local/lib/fpc/$FPCVERSION and deeper

Then we execute:

cd ~/fpc

gmake distclean

next all on one line

gmake all install OS_TARGET=win32 CROSSBINDIR=~/cross/bin BINUTILSPREFIX=i686-ming32-

INSTALL_PREFIX=/usr/local

to build the �rst snapshot (note that CPU_TARGET isn't set, and that OS_TARGET uses the FPC platform naming
(win32), while BINUTILSPREFIX uses the GNU one (since it is for the binutils). Also note that the BINUTILSPREFIX
ends with a dash. This is on purpose.

Similarly, for x86_64-linux the line becomes

cd ~/fpc

gmake distclean

next all on one line

gmake all install CPU_TARGET=x86_64 OS_TARGET=linux CROSSBINDIR=~/cross/bin BINUTILSPREFIX=x86_64-linux-

INSTALL_PREFIX=/usr/local

3.2 Crosscompiling without cross-assembler.

Sometimes one doesn't want to really crosscompile, just test if something like the RTL compiles under target <x>. If this
target is on the same architecture, one can try to use

gmake fpc_units OPT='-s'

The -s skips calling the assembler/linker and the use to the fpc_units make�le-target skips the assembling of the RTL's load-
ercode. Another such trick is to pass AS=echo or AS=gecho to gmake. Note that in former (2.4.x/4.x) times, crosscompiling
between Linux/x86 and FreeBSD/x86 was possible without cross assemblers and linkers. This to my knowledge hasn't been
retested with newer versions of these OSes.

30

CHAPTER 3. CROSSCOMPILING 31

3.3 Crosscompiling Lazarus

3.3.1 Crosscompiling Lazarus from windows to Linux

First, we need a set of cross binutils. For windows->other platforms, these are on FPC FTP ftp://freepascal.stack.

nl/pub/fpc/contrib/cross/mingw/binutils-2.15-win32-i386-linux.zip . Download and extract them to the same
directory as your �ppc386� compiler binary. Verify their install by running i386-linux-ld on the command prompt.

Second, we need FPC and Lazarus source trees. Note that the FPC tree must be an exported tree, since we are going to use
make install, and make install trips over SVN directories. So after checkout svn export the sources (see SVN paragraph for
examples)

Now we are going to build and install FPC for crosscompiling (assume FPC is installed in c:\fpc\2.4.0)

make clean make OS_TARGET=linux all make OS_TARGET=linux install INSTALL_PREFIX=c:\fpc\2.4.0

Lazarus is a di�erent matter however, since it uses shared libraries. So I copied Linux libraries from my target system and
put them in d:\linuxlib. Which libraries I copied is described in the separate paragraph below.

Before we really start, we have to workaround a di�erent problem. The compiler still has a detection for pre-glibc systems
which is easy to trip if you make a mistake. So go into i386-linux rtl directory (probably c:\fpc\2.0.4\units\i386-linux\rtl)and
copy cprt21.o over cprt0.o so that both �les are in f in fact cprt21.o.

Now we start with the Lazarus building, enter the lazarus directory and give a

rem on one line:

make OS_TARGET=linux all OPT=�-gl -Fld:\fpc\linuxlib -Xr/usr/lib -FL/usr/lib/ld-linux.so.2

-XLAc=c,dl,gmodule�

The -gl is about adding debuginfo (good to have a traceback if something goes wrong), the Fl argument speci�es the directory
to look for the linux libraries, and the -Xr argument makes the linker create the binary so that it searches in /usr/lib for
libraries. The -FL argument is the name of the dynamic linker, and the -XLA line adds two libraries (dl and gmodule) if
libc is included.1

This should build a Linux lazarus. However most likely, it will bomb out missing some library. The solutions to that are
editing the linker �le �link.res� and rerunning ppas.sh again, or adapting the d:\fpc\linuxlib dir with more or renamed
libraries. The link alias options (as -XLA above) are really handy to avoid repeated editing.

3.3.2 Preparing a directory with Linux libraries

For the crosscompile I copied a bunch of �les of the target linux distribution (and yes, these are possibly distribution and
version dependant!). Some of these are also needed for the textmode IDE. If library �les were named libname.so.x.y on linux
I renamed them to libname.so in my Windows directory, since the symlinks used for that on Linux are not easily copied.

Most of these libs are in directories like /lib, /usr/lib and maybe /usr/local/lib, /usr/X11R6/lib and /opt/gnome/lib. libgcc
however is in a GCC install dir, which can be found by doing a gcc -v and then look for a line like

�Reading specs from /usr/lib/gcc-lib/i486-linux/3.3.5/specs�

then some of the libs are in /usr/lib/gcc-lib/i486-linux/3.3.5/ Anyway, these are the �les I copied (FC4 iirc):

libpthread.so.0

libdl.so

libc.so

ld-linux.so.2

crtbegin.o

crtbeginS.o

crtbeginT.o

crtend.o

1Alternately, you can add {$linklib dl} and {$linklib gmodule} to the main lazarus source�le lazarus.pp

ftp://freepascal.stack.nl/pub/fpc/contrib/cross/mingw/binutils-2.15-win32-i386-linux.zip
ftp://freepascal.stack.nl/pub/fpc/contrib/cross/mingw/binutils-2.15-win32-i386-linux.zip

CHAPTER 3. CROSSCOMPILING 32

crtendS.o

crtn.o

crti.o

libgcc.a

libX11.so

libXi.so

libglib-1.2.so

libgmodule-1.2.so.0

libgdk_pixbuf.so

libgdk-1.2.so

libgtk-1.2.so

libXext.so

libm.so

libdl.so.2

libgmodule-1.2.so

Note that some directories are duplicate, with a su�x (like libgmodule-1.2.0)and not. I need them twice because some of
the other libraries names the full name (so the form lib<name>.so.x) as an dependancy and we can't symlink on windows,
so I simply copy it.

Making mistakes with renaming is not that bad, there will be chances to �x it. Make sure all crt* and a �le �libc.so� are
available or generating link.res will go wrong. In my case compilation for step 11 will go ok, but the linker will complain it
can't �nd libgtk.so and because on the target system, libgtk is gtk 2.0, while we want gtk1.2 for lazarus (<=0.9.26) which
is named libgtk-1.2. I solve this with the so called linkordering switch -XLAgtk=gtk-1.2 and similarly for gdk and glib. See
the separate paragraph about this switch and its limitations for more info.

3.4 Interesting compiler and make�le options

3.4.1 Skipping built in directories: -Xd

On Unix targets, Free Pascal often automatically passes default libraries like /lib and /usr/lib as include directories to the
linker. This can be a problem when experimenting with crosscompiling (and dual architecture) systems. The parameter -Xd
convinces the compiler to not add these directories.

3.4.2 Di�erence in paths: -Xr<directory>

-Xr con�gures where the linker should look for libraries when crosscompiling. It is translates to the ld �rpath-link parameter.

3.4.3 -Xt static linking

The -Xt parameter tries to link static as much as possible by passing -static to LD, the linker. A more �nely grained
control over what libraries are linked statically, and which ones are linked dynamically can at this time only be achieved
by postediting the linker �link.res� �le. Compile with -s, edit link.res, and then run ppas.bat or .sh to resume the linking
process.

3.4.4 CROSSOPT

The Make�le of compiler/ allows to specify compiler options that are only used during the actual crosscompiling state using
CROSSOPT= (so not during the initial bootstrap cycle that is not cross-)

3.4.5 LIBDIR

Allows to specify a dir to be used for linking. Don't know the exact cross-compile consequences, specially if the host OS
needs a lib path to cycle (Solaris, OS X)

Chapter 4

Systematic problem solving for the FPC build

proces

The questions of people that read the previous �make cycle faq� on the FPC maillists suggested that the main remaining
problem is what to do if something goes wrong, and to determine the exact cause of the problem.

The usual problems are:

1. Wrong versions of FPC for a certain job or trying to combine compiler and rtl that don't belong together (2.3 with
the 2.2.x RTL, or trying to generate windows binaries with the go32v2 binutils). Specially Lazarus users often try to
build with a too old version anyway, despite the minimal version advise on the main Lazarus site.

2. Leftovers of the previous install/build frustrate the current build process (not deleting old directories etc, stale .ppu's
or .o's) Be hygienic with respect to old .ppu, .o's, binaries and buildtrees!

3. Omitting details that don't have to be done for each install, (not �xing the symlink in /usr/local/bin/ that points to
the real installation)

4. Directory inclusion problems (fpc.cfg inclusive). Directories not being searched, or wrong ones included

5. (windows) Having cygwin in the PATH, which causes fatal mixing of the mingw FPC build tools and their cygwin
counterparts. Same for other development packages that e.g. provide �make�

6. (unix and strictly not a FPC problem) not installing operation system parts and libraries. Most notably the -devel
libraries on Linux, or ports on *BSD.

7. (development versions only) Trying to compile something in a directory that contains �les with the same name as
�les in the FPC cvs. The compiler �nd these, and thinks they are the RTL sources that need recompilation. Release
versions are protected against this (by compiling the RTL with -Ur)

Double checking that you are not having these speci�c common problems is worth the e�ort.

4.1 Determining the problem, increasing the verbosity.

The standard systematic search for the problem starts with increasing the verbosity level, by passing OPT=<switches>
after make. This works when executing the commandline compiler too.

The commonly used verbosity options are

-vt (show �lesearching information, searched paths etc) If you expect problems with what directories are searched, you
usually choose this to keep the amount of logged data down.

-va (show all info. REDIRECT THIS!)

This is the ultimate source if something goes wrong. The rest is pretty much guess work and experience. The verbose
compiler messages are the best source by far, and the only one that allows some systematic problem searching. Nobody
expects the Spanish Inquisition, but try to answer these questions for yourself when looking at the -va output.

33

CHAPTER 4. SYSTEMATIC PROBLEM SOLVING FOR THE FPC BUILD PROCES 34

• Is the correct compiler executed?

• Does the compiler version match with the version that you'd expect ? (You can also use ppc386 -i to check version).
This includes verifying the compiler date!

• Are the operating system and processor you are compiling for correctly named in the output?

• Is the correct fpc.cfg (name and location) loaded and is it preprocessed as you think?

• Are linker, include and unit directories correct?

• If the compiler can't �nd a unit, does a line like �unit changed, recompiling� exist a bit higher? If so see the separate
section on the �recompiling� problem.

• If you are using FPC supplied make�les, keep in mind that the fpc.cfg �le is ignored while building a �cycle� or a larger
target that depends on cycle (like �make all�) Add parameters to the make commandline, set environment variables,
or �x con�g �les (e.g. /etc/ld.so.conf if it is a linker directory problem) to �x this.

If you do use nested include�les, is the nesting the same way as you expect? (a small �lter program can be quite handy to
�graph� how include�les are included for complex �les)

4.2 Checklist

Some other things easily checked without extra verbosity :

• (on unix) Check the compiler location with �which ppc386�.

• Check the compiler version and date with ppc386 -i

• Look at your path variable (echo $PATH on unix, echo %PATH% on dos/windows), and check that the FPC directory
for the target you choose is �rst. Specially make sure that

1. there is no cygwin directory in the path at all (cygwin tools use non-dos path layout, and need special handling.
FPC's mingw based versions of make and the binutils don't mix well with cygwin's)

2. (Windows) there is no other directory of a development tool (Delphi, JBuilder, VC++) in your path. These can
contain own versions of certain tools, mainly make that are not compatible. A make -v or make �version can be
useful too.

3. the PATH variable is spelled in all capital letters. If you have this problem, correct it in the windows environment
dialogue (one of the tabs of System settings) A batch�le that can �x this on the go for if you don't have permissions
to �x it directly on your work system is
set a=%PATH%
set Path=
set PATH=%A%
set a=

4. Check your fpc.cfg. I know, you never edit that one, and it has worked always, but do so anyway. Quickly inserted
�I have to get this working now!� changes are easily forgotten.

4.3 Recompiling

A standard gotcha for FPC newbies is when the compiler says it can't �nd unit xxx, while you are really 100% sure it is
there, and the directory with that �le is searched. (note : make 100% sure that this is the case, before continuing)

The most common causes are:

1. (by far the most common) stale .o and .ppu's, or incorrect settings that include wrong directories. (with .ppu and .o's).
Run make distclean

2. Including the main source trees into your unit searchpath. This is wrong, they should only be in your debugger/codetools
sourcepath

3. include�les and unit names that are not unique.

CHAPTER 4. SYSTEMATIC PROBLEM SOLVING FOR THE FPC BUILD PROCES 35

4. A di�erence in the de�nes.

If so, if you do the same build with OPT='-va' and search for �Recompiling�

[Un�nished]

Chapter 5

Misc topics

5.1 Programming models.

Over the last few years, FPC has started to support an increasing amount of platforms that use the Unix speci�c RTL parts.

Some form of reorganisation was necessary, and because more processor platforms are in preparation for FPC, I decided
to look into portability issues, specially creating 64-bit clean code, and alignment and endianness. The main reasons for
researching portability for Object Pascal were Free Pascal's plans to port to 64-bits platforms like x86_64, Sparc64 and
PowerPC G5.

The term 64-bit clean is somewhat misleading, because it is not limited to 64-bit architectures alone, but a general principle
for writing code in a way that it runs on a lot of processors. The basic principle is to only allow conversion between a certain
integer type and pointer, and always have a certain integer type (PtrInt) that is guaranteed to scale with pointer size.

In C, the standard �long�, or a new �long long� type is used for this. Since pointers aren't generally regarded as �signed�,
it seems logical to pick an unsigned type to be compatible with a pointer. Signed or unsigned doesn't much matter for
compability with C as long as integers are coded using two's complement, and because the interface between C and another
language is untyped.

The reason to de�ne a new type Long Long is simple, to allow legacy code that assumes that integer and long are equal in
size to keep on working without modi�cation.

A chosen set of types is refered to in C faqs as a �programmingmodel�, and are named ILP-x, LLP-x or LP-x with x the
processor's wordsize in bits, typically 32 or 64. ILP-x means that Integer, Long and Pointer are x bits wide, LP-x that Long
and Pointer are x bits wide, and LLP that Long Long and Pointer are x bits wide.

Some typical programming models are listed in the table below.

Ctype objpas Size in model

ILP32 LP32 LP64 ILP64 LLP64

char byte/char/smallint 8 8 8 8 8
short shortint 16 16 16 16 16
int integer/longint 32 16 32 64 32
long 32 32 64 64 64

long long 32 -(32) -(64) -(64) 64
pointer pointer types 32 32 64 64 64

• Some points in the table need explaining:

• Standard programming model for current (intel family) PC processors is ILP32. All 32-bits OSes use it.

• The problem with long in C was that there are both large codebases that expect pointer and long to have the same
size, while there are also large codebases that expect int and long to be the same size. The compability model LLP64
was designed to keep the long<->int compability by introducing a new type to remain compatible with pointer (long
long)

• long long doesn't exist except in LLP64, and both long and longlong don't have an clear equivalent in Object Pascal
yet. A new type would have to be created just like under C. Since Pascal has no long<-> ptr equivalence established
yet, the long vs long long discussion is unimported. It was however decided to create both a signed (PtrInt) and an
unsigned (PtrUint) type that scale with pointer size

36

CHAPTER 5. MISC TOPICS 37

• LP32 is used as model for the win-16 APIs of Windows 3.1

• Most *nixes use LP64, mainly to conserve memory space compared to ILP64, since using full 64-bit ints is hardly
necessary and a waste of memory. Examples: 64-bit Linux, FreeBSD,NetBSD,OpenBSD

• Win64 uses the LLP64 model, which was also known as P64. This model conserves type compability between long
and int, but loses type compability between long and pointer types. Any cast between a pointer and an existing type
requires modi�cation.

• ILP64 is the easiest model to work with, since it retains all compability with the much used ILP32 model, except
speci�c assumptions that the core types are 32-bit. However this model is quite memory-hungry,and both code and
data size signi�cantly increase. Typically used by commercial unices, like IBM AIX.

• There are no dos models in the table, since dos doesn't have a �at memory model. (a pointer can't be represented by
a single value in these models. DJGPP extender models are ILP32 though.

5.2 Link ordering

Starting with 2.0.4 some switches were added that simplify dealing with changing library names. These switches are BETA
and may change or disappear at any time, e.g. when a linker description language is implemented. They were mostly added
to be able inventorize how useful such a system would be in practice, mostly it is meant to deal with changes in library
names and keep a release running without repackaging it before a �nal decision is made. They are BETA also because the
internal linker might totally change the linking backend in the near future.

The main problem it solves is that with FPC, names of libraries can be hardcoded in the FPC source in $linklib or
EXTERNAL declaractions. While this is generally a good thing that makes it way easier for the user and avoids kludges
like having to specify each and every library on the commandline like gcc, it can be annoying in times when librarynames go
through a transition, and you use a distribution that renames libraries.

Besides the name, also the order of libraries might sometimes be a problem, specially when libraries don't specify their
dependancies correctly. Most of these issues are with relative lowlevel libs like libgcc.

FPC 2.0.4 introduces several beta switches to deal with this. There are three new parameters:

1. -XLAlibname=[libname1][,libname2..]

2. -XLOlibname=<number>

3. -XLD

A limitation that remains is that there is no way to allow the user to decide which libraries are to be linked statically, and
which are to be linked dynamically. This mainly for easier deployment on linux (non standard libs? -> force static). Another
limitation recently surfaced is that this only goes for libraries. Object �les, and their order are untouched

5.2.1 -XLA

The �rst parameter, -XLA, de�nes a subsitution of library name. The libs on the right side are added to the parameters of
the linker if the lib on the left side is in the list with libraries to link that is constructed from the source. The right side can
be empty, and can also contain the libname that is already speci�ed on the left. Examples:

• -XLAc=c,dl makes sure that libdl is added if libc is in the list, libc remains in the list.

• -XLAdl= removes libdl from the list of libraries to link even if it was {$linklib xx}'ed in the source

• -XLAgtk-12=gtk12translates a link to libgtk12 to search for libgtk-12

CHAPTER 5. MISC TOPICS 38

5.2.2 -XLO

The parameter XLO de�nes a weight. Libraries are sorted on weight into descending order. Defaults weight is 1000. If you
decrease the weight, it will be lower in the list with libraries to link. This is mainly useful to link certain libraries (typically
the more lowlevel ones) in a certain order, like e.g. with libc_r and libc on FreeBSD4, or to get programs to link that made
a mess of their dependancies. This possibility removes the need for a few ad-hoc ordering hacks, and the special parameter
for the FreeBSD 4->5 transition that was one such kludge, -Xf was reimplemented using this functionality. The compiler
has default weights on a per target basis. This mainly means that libc usually will be somewhere near the end.

Example:

-XLOc=1050

puts libc before libraries that don't have a weight speci�ed in link.res (since the default is 1000)

5.2.3 -XLD

The parameter -XLD simply makes the compiler forget the defaults for weights and aliases. This can be useful if something
changes for a library that has a hardcoded weight, or when a built-in alias is not needed anymore.

5.2.4 Example: Fixing the FreeBSD GTK breakage with linkordering

The FreeBSD ports maintainers decided to force large changes related to linking using libtool on the ports tree in november
2005 (in UPDATING), but they were not into e�ect till April 2006. One of sidee�ects of these changes were renaming of the
GTK 1 libraries to gtk-12, gdk-12 and glib-12, where they used to be gtk12, gdk12 and glib12. These changes a�ected all
users that tracked 5 and 6 stable, since they didn't wait for a major version transition to introduce this. Ports maintainers
also refused to add a few symlinks for a while to ease the transitions, and pointed to gcc speci�c tools like gtkcon�g and
libtool. (these emit gcc commandlines).

Most users track STABLE by default out of practical purposes, and changing the FPC binary to call external programs and
to parse them, would only make the whole process more fragile and harder to support. I myself decided to give up working
on FPC ports tree entries because I really start wondering where I bene�ted from participating in the ports tree process.
The work is immense, and the uses for the users are small if such changes break packages so hard and relatively often.

Since in time, more and more users will use either -STABLE or a release based on -STABLE after the change, in FPC 2.2.0
I changed the default name of the GTK libraries to their new names, and introduced linkordering switches to keep older
installations working. So if you have a system from before this change, and don't track stable, you can workaroundthis by
putting the following in your fpc.cfg or .fpc.cfg:

• -XLAglib-12=glib12

• -XLAgdk-12=gdk12

• -XLAgtk-12=gtk12

5.2.5 Example II: FreeBSD 4 vs 5 pthreads:-Xf

Another item is the ppc<x> parameter -Xf, which signals an alternate pthreads layout. Currently it only exists for FreeBSD.
On versions 2.0 and 2.0.2 the parameter signals FreeBSD 5.x libpthread behaviour, and on 2.0.4 it signals 4.x libc_r behaviour.
In 2.0.4 the parameter was reimplemented on top of the linkordering routines, so that when compiling for 4.x libc_r can be
used , 1 en when compiling for FreeBSD 5.x libpthread will be linked in. Also the ordering is �xed using internal equivalents
of -XLO, and the defaults are also overridable with -XLD.

12.0.4 doesn't provide a out of the box 4.x setup anymore, though generally the functionality should be preserved.

Part II

Glossary

39

40

Note that this glossary tries to explain compiler and FPC project speci�c jargon, not Pascal/Delphi in general.

architecture Roughly the processor family. Note that for PC's, the x86 architecture (all 80x86 chips) is often misused,
where the i386 architecture (80386 and higher) is meant. The PC version of FPC is i386 architecture, and doesn't run
on older x86 proc essors. Other architectures are PowerPC (which is subdivided into power32 (=32-bits) and power64
(=64-bit)), m68k (68030+ in practice), Sparc V7, Sparc V8, Sparc V9 (the latter better known as Ultra Sparc). ARM
versioning is more complex, since those processors can be built to order, a customer can choose from several cores, and
add modules like FPU, memorysystem (endianness), DSP functionality etc.

AR The GNU archiver. Combines .o �les into .a �les. .a �les are used for smartlinking, though that might change in the
near future.

AS The GNU assembler. The backend assembler that is used if FPC needs an external assembler.

assembler a textual representation of the binary machinecode that is fed to the processor.

alias A function or variable with a name that doesn't adhere to standard name mangling, usually for internal functions or
foreign language interfacing.

binwriter The part of FPC that directly writes .a's and .o's. Since using the binwriter eliminates executing AS (and
possibly AR), building is much faster. The reason why it is not available for each platform is that there is no universal
.o format. Every binary type often has its own .o variant, and all need special support in FPC.

branch(CVS,SVN) Normally versions of a �le in CVS are a linear series of updates, a new version after each update. This
can be thought of as the trunk of a tree. However at a certain point you might want to add an update that might e.g.
break backwards compability or that introduces instability for some time. The solution then is to have two sequences
of versions. One with that update (a development series of update), and one without. These separate series are the
branches of a tree.

bootstrapping is the entire process of creating a compiler starting from another compiler (another version or a totally
di�erent compiler). See also make cycle

Carbon A Mac OS widgetset/API, which is essentially the cleansed subset of the classic Mac OS API that works with Mac
OS X.

CLX A library from Borland that is a bit more multiplatform and should have replaced VCL. However users stayed away
in droves. CLX is GPLed, and thus is not very usable for FPC, library wise.

COCOA A Mac OS X widgetset/API written for use with Objective C.

contrib directory A directory in SVN (module fpcprojects) where some ported Delphi packages are kept (ICS, Abbrevia,
Decal). This directory is a subdirectory of the projects directory.

Cross

(cross -compiling, -linking and -assembling) Generating binaries or libraries for other operating system and/or
processor than that you are currently working on.

(crossbinutils) binutils (ld,as,ar) that generate binaries for other operating systems and processors.

(crossbindir) Place where the crossbinutils can be found.

CVS A version management tool used by the FPC tool to manage the FPC source code before may 2005

Cygwin www.cygwin.com A distribution of unix tools for windows that tries to stay as close to the original Unix semantics.
See also mingw

dead code elimination GCC or maybe general C jargon for smartlinking. The default dead code elimination of gcc is not
as �nely grained as FPC smartlinking though.

ELF binary format of most modern unices and unix likes. Except for Mac OS X (see Mach-O)

Export (libraries) Making symbols (procedures, variables) available to the outside. (e.g. outside the unit, outside the
library/program) (SVN)

FCL Free Component Libraries. Non visual class libraries, provided for partial Delphi source compability, at least at a non
visual/GUI level. See also VCL.

FPC

www.cygwin.com

41

1. Free Pascal Compiler abbrev.

2. The fpc compiler frontend binary.

FPCMAKE util to convert Make�le.fpc to Make�le

FPMAKE The succesor to fpcmake and make/make�les in general that is supposed to render the latter obsolete in 2.2.
The main features are a more maintainable and performant build system (crosscompiling inclusive)

FPPKG Another build tool scheduled for 2.2 which should allow auto download+compile of packages, a bit like what the
FreeBSD ports tree with a apt-get like cmdline frontend would look like. (or portupgrade, which is the proper FreeBSD
pendant)

FPDOC A documentation generation system used by FPC internally, but also usable for external use. fpdoc takes a XML
�le generated by makeskel, and postedited with fpde, processes the �le and generates multiple documentation formats
from it (html,text,T E X)

GO32v2 Pure Dos is 16-bit. FPC programs are 32-bit. The program that hides the 16-bit nature a bit, and does 32-bit
DPMI dos memory management for 32-bits applications is called the Dos-Extender. FPC uses the GNU Go32 version
2 dos extender. (though others are possible in theory, like pmode. See manual)

Inline If procedure X calls procedure Y, and Y is �agged for inlining, then Y will be totally optimised away, and in the
�nal code (in the binary), the code of Y will appear to be in X. If Y is called on two separate places in X, the code will
appear twice in X. While nearly anything can be �agged � inline;�, some kinds of procedures/methods are excluded
from inlining, like virtual methods.

Internal linker A linker built in to the compiler, as opposed to an external linker like GNU LD. FPC uses an internal
linker in FPC 2.2+ for the three windows platforms (win32/win64/wince)

Lazarus A multi widget GUI RAD for Free Pascal. Not a blind Delphi drop in replacement, but the support of GTK makes
it useful. At the moment of writing this, Lazarus is developing rather fast, for up to date information, see their site
Lazarus site

LCL The set of Visual classes used by Lazarus and the programs it generates. The LCL is generally independant of platform
or GUI widget library. Starting with 0.9.28 on *nix the LCLwill use GTK2, win32/64/ce on Windows, and Carbon on
OS X. A QT based port is also available for *nix.

LD The GNU linker, which is nearly always the one used by FPC.

Mach-O binary format of OS X/Darwin make cycle A command to rebuild the FPC compiler and core RTL from source.
(bootstrap, building a new compiler from an older, or other compiler)

make all A command to rebuild the entire base FPC sourcecode. This is roughly equivalent to the snapshots.

mangling see namemangling

mingw (mingw32,mingw64 depending on win32 or win64) A distribution of Unix tools for Windows that adapts more to
�the windows way� than cygwin.

Namemangling Languages can have di�erent namespaces that can contain the same name, however on the linker level
there is only one namespace. Namemangling is the process that maps the multiple language level namespaces onto the
single linker level namespace. An example is e.g. the unitsystem. Units can contain variables with the same name.
Say unit A contains variable �buildfaq�, and unit B does too. Naming both �buildfaq� would make them clash on
the linker level. A solution is to pre�x the variable name with the unitname. So �buildfaq� in unit A will be called
A_buildfaq, and in unit B B_buildfaq. Namemangling is compiler (and -version) speci�c, and since the namespace
rules vary with the language also somewhat language speci�c. An exception is the C (not C++) language which barely
has namespaces, and therefore often has little or no mangling. The C++ namemangling is a notorious case, since it
changes from compiler to compiler and version to version.

NEWRA The new improved register allocator of the 1.1.x (2.0+) series. The new register allocator should improve compiler
performance and maintainability by automatically arranging a fairly optimal register usage. Since this removes the
need for manually keeping track of registers in the codegenerator,this improves maintainability a lot.

Packages is a bit of an ambiguous term when used in the FPC project. (see also http://wiki.freepascal.org/packages
http://wiki.freepascal.org/packages)

1. Sometimes �packages� refers exclusively to the separate unit sets in the packages/ directory of the source tree,

http://lazarus.freepascal.org
http://wiki.freepascal.org/packages

42

2. sometimes it also includes the other separately compilable parts of the project (like compiler, rtl, fcl, ide, fvision,
lazarus, installer and utils),

3. a third description is the Delphi language feature with the same name, a more automated form of dynamic libraries.
In this document it's usually the second one.

PIC (Position Independant Code) a system for Unix (*BSD, Linux) that ensures relocatability of shared libraries, and allows
easy minor version upgrades of libc libraries without recompiling the library.

Pre�x

1. (PREFIX) place where the snapshot building (make all install) will use as root directory for the installation of
the �les. (default: \pp on windows, /usr/local on most unices) The dollar sign that is sometimes prepended is
the (Unix) notation for environment or make�le variable, a bit like Windows/DOS %something%.

2. (BINUTILSPREFIX) A string that is pre�xed to the binutils when crosscompiling. Usually in the form processor-
operatingsystem-(like �i686-mingw32-�)

Projects directory a directory in CVS where experimental and independant projects are stored. Usually Delphi code ported
to FPC (see contrib directory), and Lazarus.

Ptrint A integer type that has the same size (in bits) as the pointer type.

PtrUint is the unsigned form. Register allocator The engine that tries to make optimal use of the processor registers to
avoid reloading from memory.

Register parameters A calling convention that tries to put parameters to procedures in registers. Delphi has a register
calling convention by default. FPC is slowly starting to support register parameters now (thanks to NEWRA changes).
Most non PC processortypes also use register parameters. Since december 2003, FPC defaults to this convention
on i386 too, for Delphi compability.Duringthe last months of 2006, a bug was found in the Delphi compability of
register parameters; when procedures use more than 4 parameters (one less for methods), the fact that FPC pushes the
parameters in the opposite order of Delphi becomes a problem. This probably will be tackled in FPC 2.1.1 in spring
2007.

Register variables An optimization technique that avoids reloading variables from memory into the main CPU's registers
by trying to keep frequently used variables in registers as much as possible. FPC 1.0.x had this in a primitive way based
on reserving a few registers for variables. FPC 2.x has a way more intelligent system as a part of the registerallcoater

RTL RunTime libraries. The base set of libraries used by FPC. These include e.g. the System unit, the dos unit, the
sysutils unit and a platform dependant unit. The System unit also contains functions that the compiler calls internally
to do more complex language operations like SET and string handling.

shared linking Linking with dynamic libraries (unix: .so shared libraries; win32: .dll shared libraries)

smart linking essentially avoids linking of unused code into the �nal binary. See the separate paragraph (1.8) elsewhere in
this document for more details.

static linking The ordinary way of linking, producing one standalone binary, though sometimes smartlinking is also called
�static� linking. This might be true for C, but FPC has two di�erent modes because with FPC the granularity of
smartlinking typically is higher.

Starting compiler A compiler that is used to build a new compiler.

Subversion(SVN) The current version management system.

tag(CVS,SVN) A tag simply identi�es a bunch of di�erent �les that belong together. It's commonly used to mark a the set
of versions that are released as a formal (pre)release. E.g. the FPC 1.0.10 release is tagged with RELEASE_1_0_10
etc.

target

1. Roughly the operating system and CPU that the binary must run on, typically in CPU-OS notation (e.g. i386-
freebsd) There are exceptions though, like Dos has a target for each extender, and some compilers have multiple
targets for Windows (gcc: mingw, cygwin) too. Some toolchain let the CPU re�ect the CPU that is optimised for
(i386,i486, i586 etc), some not. FPC does not (all i<x>86 platforms, x>=3, are called i386)

43

2. Lazarus adds the widget set too, e.g. x86-win32-win32 (i386+ processor, win32 OS, and win32 (GDI) widgetset)
and x86_64-win64-win32 (means 64-bit x86 CPU, win64 OS, and win32 widgetset (GDI)).2

VCL Borland's classes libraries. Since these contain bot win32 GUI and non-GUI classes. the VCL rougly equates to the
non visual FCL classes plus the visual classes in Lazarus' LCL.

Widgetset A library or API for visual output. (originates on Unix where core drawing, and windowing is separated)

win32

1. The API of Windows 9x and NT,2000,XP that is roughly the same over all versions. (though newer versions add
more calls). A cut down win32 api is available for win3.1x and is called �win32s�. FPC doesn't support win32s
(actually: it was never tested is a better description)

2. The FPC target for this api

3. In Lazarus it is also the designation for the graphical part of the win32 api (which is actually called GDI, roughly
the widgetset). Lazarus windows binaries for target win32 and win64, have as widget set.

Win64 The 64-bit variant of the win32 API. Very close to win32.

wince The windows api the mobile Windows versions (wince/pocketpc/windowsmobile) are based on. Note that nowadays
also �XP embedded� exists which is win32 based, but based on the NT kernel, so specially with tablet PCs make sure
what you exactly have.

winNT The common underpinnings of NT4, windows 2000 (NT5) ,XP (NT5.1) ,2003 (NT5.2),Vista (NT6), 2008 and 7
(NT7)

windres A resourcecompiler used to turn resource scripts into .res �les that can be included by the linker.

2The fact that lazarus names the widgetset for win64 �win32� doesn't mean it is some form of 32-bit emulation. The di�erences were simply
too small to de�ne an additional target

Index

-FD, 16, 17
-Fl, 16, 19
-Fu, 16, 17
-Ur, 33
-XLA, 37
-XLD, 38
-XLO, 38
-XP, 17, 18
-Xd, 32
-Xf, 38
-Xr, 32
-Xt, 32
-gl, 23
-ld-sections, 9
-va, 33
-vt, 33

alias, 40
AR, 9, 40
architecture, 40
AS, 9, 40
assembler, 40

binutils, 8
BINUTILS PATH, 16
BINUTILSPREFIX, 17, 42
BINUTILSPREFIX, 18
binwriter, 40
bootstrapping, 40
branch, 40

Carbon, 40
cfg, 16
Checkout(SVN), 12
CLX, 40
COCOA, 40
CONTNRS not found, 29
contrib, 40
COPYTRE	E, 27
cpu86, 17
crossassembling, 40
crossbindir, 40
CROSSBINDIR, 18
crossbinutils, 40
crosscompiling, 40
crosslinking, 40
CVS, 40
Cygwin, 10, 40

dead code elimination, 40
Directory layout, 14

ELF, 40

Export, 40
Exporting(svn), 13
Extensions (�le-), 14

FCL, 40
FIXES_1_0_0 branch, 7
�xes_2_0 branch, 7
�xes_2_2 branch, 7
FPC, 40
fpc(binary), 11
fpc.cfg, 14
FPC=, 23
$FPCCPU, 15
FPC_CROSSCOMPILING, 17, 18
$FPCDATE, 15
$FPCFULLVERSION, 15
FPCMAKE, 10, 41
$FPCOS, 15
$FPCTARGET, 15
$FPCVERSION, 15
FPDOC, 41
FPMAKE, 41
FPPKG, 41

GINSTALL=, 27
gmake, 10
GO32v2, 41
Go32V2, 10
go32v2, 10

ILP32, 36
ILP64, 36
Inline, 41
install.exe (Vista), 27
INSTALL_PREFIX=, 24
Internal linker, 41

Lazarus, 41
LCL, 41
LD, 9, 41
Library path, 19
linuxator, 19
LLP64, 36
LP32, 36
LP64, 36

MachO, 41
make, 10
make -j 2, 11
make all, 41
make cycle, 20
make distclean, 22
make examples, 20

44

INDEX 45

make install, 25
Mingw, 10, 41
mingw32, 41
mingw64, 41

Namemangling, 41
NEWRA, 41

OP	T, 23

Packages, 41
PIC, 42
Piping stderr, 29
PP=, 23
ppc386, 11
ppc386.cfg, 16
ppcppc, 11
ppcsparc, 11
ppcx64, 11
PREFIX, 24
$PREFIX, 42
Pre�x, 42
Projects, 42
PtrInt, 36
Ptrint, 42
PtrUint, 36, 42

register allocator, 41
Register parameters, 42
Register variables, 42
RELEASE_2_2_2, 13
Requirements, 8
Reverting(SVN), 13
RTL, 42

shared linking, 42
smart linking, 42
starting compiler, 42
static linking, 42
Subversion, 42
SVN, 42

tag, 42
target, 42

UNITPATH, 16
Updating(SVN), 13
UPXPROG=, 27

VCL, 43
verbosity, 33
Viewvc webinterface, 7

Widgetset, 43
win32, 10, 43
Win64, 43
win64, 10
wince, 43
windres, 43
winNT, 43

x86_64, 11

	I Ordinary building
	Base principles, naming, versions, requirements etc
	Versions, branches, tags
	Requirements
	ld: The GNU linker.
	as: GNU asssembler
	ar: GNU archiver
	make: GNU make
	FPC itself. ppc386, ppcppc, ppcsparc, fpc.
	Other tools

	Obtaining source
	Introduction
	SVN Modules
	Downloading source via SVN
	Updating the source via SVN
	Reverting SVN checkouts
	Exporting (win32 users, read this!)
	More info about SVN

	Extension conventions
	Directory layout
	Unix (and full clones like Linux)
	Windows and Dos
	Where are my units?

	The fpc.cfg configuration file
	Unit path -Fu
	Binutils path -FD
	Binutils prefix, all binutils in one directory
	Library path -Fl
	Verbosity options

	The order to compile parts of FPC
	Some interesting build scripts

	Smart linking

	Standard building
	Cleaning
	Make clean
	make distclean
	Cleaning of crosscompile builds

	Bootstrapping: make cycle
	Compiling a snapshot; make all or make build
	Current build procedure on win32
	The slow solution: SVN exporting
	The Quick solution: COPYTREE
	VISTA specific topics: install.exe
	Putting it all together

	Lazarus
	Typical problems and tips
	cannot find -l<xxxx>
	CONTNRS or other FCL-BASE units not found
	Piping stderr and stdout to the same file.
	(Windows) building and install fails with ``invisible'' errors

	Crosscompiling
	Basic crosscompiling of a snapshot
	Crosscompiling without cross-assembler.
	Crosscompiling Lazarus
	Crosscompiling Lazarus from windows to Linux
	Preparing a directory with Linux libraries

	Interesting compiler and makefile options
	Skipping built in directories: -Xd
	Difference in paths: -Xr<directory>
	-Xt static linking
	CROSSOPT
	LIBDIR

	Systematic problem solving for the FPC build proces
	Determining the problem, increasing the verbosity.
	Checklist
	Recompiling

	Misc topics
	Programming models.
	Link ordering
	-XLA
	-XLO
	-XLD
	Example: Fixing the FreeBSD GTK breakage with linkordering
	Example II: FreeBSD 4 vs 5 pthreads:-Xf

	II Glossary

